Study on Fuzzy Multiple Reference Model Adaptive Control Strategies

Article Preview

Abstract:

A new fuzzy multiple reference model adaptive control method combined with fuzzy select and conventional adaptive control is presented. To overcome the control difficulties which due to significant and unpredictable system parameter variations, fuzzy logic rules are designed to choose the suitable reference model. The new method is applied to control the speed servo system of dynamic model of BLDCM, and the simulation results show it works well with high dynamic performance and control precision under the condition of great change in reference speed and load torque.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 962-965)

Pages:

2932-2938

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kamalasadan. S, Ghandakly A.A. Multiple Fuzzy Reference Model Adaptive Controller Design for Pitch-Rate Tracking[J]. IEEE Trans. Instrumentation and Measurement. 2007. 10, 56(5), pp.1797-1808.

DOI: 10.1109/tim.2007.904550

Google Scholar

[2] A. Michael, I. Rosen. Variable structure model reference adaptive control of parabolic distributed parameter systems[A]. IEEE Trans. the American Control Conference, 2002, 6, pp.4371-4376.

DOI: 10.1109/acc.2002.1025334

Google Scholar

[3] K. Mitsuru, T. Masayoshi. Model reference adaptive control of linear systems with input saturation[A]. IEEE Trans. International Conference on control application, 2004, 2, pp.1318-1323.

Google Scholar

[4] E. Daniel. A new approach to model reference adaptive control[J]. IEEE Trans. Automatic Control, 2003, 48(5), pp.743-757.

DOI: 10.1109/tac.2003.811251

Google Scholar

[5] K. Alvaro, R. Ramon and H. Liu , et al. Multivariable adaptive control using high-frequency gain matrix factorization[J]. IEEE Trans. Automatic Control, 2004, 49(7): pp.1152-1157.

DOI: 10.1109/tac.2004.831134

Google Scholar

[6] K. Narendra, J. Balakrishnan. Adaptive control using multiple models[J]. IEEE Trans. Automatic Control, 1997, 42(2): pp.171-187.

DOI: 10.1109/9.554398

Google Scholar

[7] Yin-Song Wang, Wu-Lin Liu. One kind of fuzzy neural network PID controller [J]. Journal of System Simulation, 2003, 15(3): pp.389-392.

Google Scholar

[8] K. Sukumar. A new generation of adaptive control: an intelligent supervisory approach[D]. Toledo, Toledo University, (2004).

Google Scholar

[9] K. Sukumar, A. Adel, S. Khalid. A fuzzy multiple reference model adaptive control scheme for flexible link robotic manipulator[A]. IEEE Trans. International Conference on Computational Intelligence for Measurement Systems and Applications, 2004, 2, pp.162-167.

DOI: 10.1109/cimsa.2004.1397255

Google Scholar

[10] Zhang Bo, Li Zhong, Mao-Zongyuan. The chaotic model of permanent magnet synchronous motors and its fuzzy modeling [J]. Control Theory and Applications, 2002, 19(6): 841-844.

DOI: 10.1109/wcica.2000.863126

Google Scholar