The Molecular Simulation Study of Optimum Blending Ratio for PVDF/PVC Membrane

Article Preview

Abstract:

The PVDF/PVC blending membrane has a certain application in the field of sewage treatment. In this paper, the simulation study for the blending ratio of the PVDF/PVC membrane has been carried on, which has an influence on the membrane’s ability of sewage treatment. Firstly, the membrane models were constructed via Amorphous Cell module of MS (material studios) 6.0. Secondly, the optimization processes were achieved via Minimizer and MD (Molecular Dynamics) method of the Discover module. Lastly, the diffusion coefficients D was calculated indirectly through the Mean square displacement (MSD) getting from Forcite module and the solubility coefficients S was calculated indirectly through the adsorption isotherm getting from Sorption module. It was found that the membrane had a best ability of sewage treatment when the content of PVC was 5% (mass fraction). And the calculated result was well consistent with experiment result.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dongliang Wang, K. Li*, W.K. Teo. J Membr Sci. 163(1999): 211-220.

Google Scholar

[2] J. Ma, Z. Wang, M. Pan, Y. Guo. J Membr Sci. 341(2009): 214-224.

Google Scholar

[3] Xingtao Zuo *, Wenxin Shi , Zhaodong Tian, Shuili Yu, Shuo Wang, Jiajie He. Desalination. 311(2013): 150-155.

Google Scholar

[4] A. Bottino, G. Capannelli, A. Comite. Desalination. 183(2005): 375-382.

Google Scholar

[5] Sajitha C J, Mahendran R, Mohan D. European Polymer. 2002, 38(12): 2507-2511.

Google Scholar

[6] Marchese J, Ponce M, Ochoa N A, et al. J Membr Sci. 2003, 211(1): 1-11.

Google Scholar

[7] Ochoa N A, Pradance P, Palacio L, et al. J Membr Sci. 2001, 187(1-2): 227-237.

Google Scholar

[8] Yoo J E, Kim J H, Kim Y, et al. J Membr Sci, 2003, 216(1-2): 95-106.

Google Scholar

[9] Uragami T, Naito Y, Suginara M. Polym Bull. 1981, 4: 617.

Google Scholar

[10] Tingyu L, Wenching L, Liying H, et al. Polym AdvTechnol. 2005, 16: 413.

Google Scholar

[11] Qi Zhang, Shifeng Zhang, Yufeng Zhang, Xiaoyu Hu, Yingbo Chen. Desalination and Water Treatment. 2013, 51: 19-21, 3854-3857.

DOI: 10.1080/19443994.2013.781735

Google Scholar

[12] K. Bierbrauer, M. Lopez-Gonzalez, E. Riande, C. Mijangos. J Member Sci. 362(2010)164-171.

Google Scholar

[13] Y. Peng, Y. Sui. Desalination. 196(2006)13-21.

Google Scholar

[14] Chunhai Lua, *, Shijun Ni, Wenkai Chenc, Junsheng Liaoa, Chengjiang Zhang b. Comput Mater Sci. 49(2010) 565-569.

Google Scholar

[15] Chara, S. G; Stern, S. A. Macromolecules. 31 , 5529-5538(1998).

Google Scholar

[16] Hofmann D, Fritz L, Ulbrich J, Schepers C, Boehning M. Macromol Theory Simul. 9 , 293-327(2000).

Google Scholar

[17] Mauze G. R, Stern S. A. J Membr Sci. 1982, 12: 51-64.

Google Scholar

[18] Mauze G. R, Stern S. A. Polym Eng Sci. 1983, 23(10): 548-555.

Google Scholar

[19] Fried J. R, Ren P. Comput Theory Polym Sci. 2000, 10: 447-463.

Google Scholar

[20] Metropolis N, Rosenbluth A. W, Rosenbluth M. N. et al. J Chem Phys. 1953, 21: 1087-1093.

Google Scholar