[1]
A. Moropoulou, A. Bakolas, E. Aggelakopoulou. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis, Thermochimica Acta, 420 (2004) 135-140.
DOI: 10.1016/j.tca.2003.11.059
Google Scholar
[2]
R. Siddique, J. Klaus. Influence of metakaolin on the properties of mortar and concrete: A review, Applied Clay Science, 43 (2009) 392-400.
DOI: 10.1016/j.clay.2008.11.007
Google Scholar
[3]
S. Donatello, M. Tyrere, C. R. Cheeseman. Comparison of test methods to assess pozzolanic activity, Cement and Concrete Composites, 32 (2010) 121-127.
DOI: 10.1016/j.cemconcomp.2009.10.008
Google Scholar
[4]
J. Cabrera, M. F. Rojas. Mechanism of hydration of the metakaolin-lime-water system, Cement and Concrete Research, 31 (2001) 177-182.
DOI: 10.1016/s0008-8846(00)00456-7
Google Scholar
[5]
I. Havlíková, R. V. Majtánová, H. Šimonová, J. Láník, Z. Keršner. Evaluation of three-point bending fracture tests of concrete specimens with polypropylene fibres via double-K model, Key Engineering Materials, 592-593 (2014) 185-188.
DOI: 10.4028/www.scientific.net/kem.592-593.185
Google Scholar
[6]
S. Xu, H. W. Reinhardt, Z. Wu, Y. Zhao. Comparison between the double-K fracture model and the two parameter fracture model, Otto-Graf-Journal, 14 (2003) 131-157.
Google Scholar
[7]
X. Zhang, S. Xu. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis, Engineering Fracture Mechanics, 78 (2011) 2115-2138.
DOI: 10.1016/j.engfracmech.2011.03.014
Google Scholar
[8]
V. Červenka, L. Jendele, J. Červenka. ATENA Program documentation – Part 1: Theory. Červenka Consulting, Prague, (2012).
Google Scholar
[9]
B. L. Karihaloo. Fracture mechanics of concrete. Longman Scientific & Technical, New York, (1995).
Google Scholar