Prediction of Surface Roughness Profiles for Milling Process with Fractal Parameters Based on LS-SVM

Article Preview

Abstract:

Least squares support vector machines (LS-SVM) were developed for the analysis and prediction of the relationship between the cutting conditions and the corresponding fractal parameters of machined surfaces in face milling operation. These models can help manufacturers to determine the appropriate cutting conditions, in order to achieve specific surface roughness profile geometry, and hence achieve the desired tribological performance (e.g. friction and wear) between the contacting surfaces. The input parameters of the LS-SVM are the cutting parameters: rotational speed, feed, depth of milling. The output parameters of the LS-SVM are the corresponding calculated fractal parameters: fractal dimension D and vertical scaling parameter G. The LS-SVM were utilized successfully for training and predicting the fractal parameters D and G in face milling operations. Moreover, Weierstrass-Mandelbrot(W–M )fractal function was integrated with the LS-SVM in order to generate an artificially fractal predicted profiles at different milling conditions. The predicted profiles were found statistically similar to the actual measured profiles of test specimens and there is a relationship between the scale-independent fractal coefficients(D and G).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

1186-1193

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Stark and K.S. Moon :J. Manuf. Sci. Eng. Trans. ASME. Vol. 121(1999) , pp.251-256.

Google Scholar

[2] E. Santner, D. Klaffke, K. Meine, Ch. Polaczyk, and D. Spaltmann : J. Wear. Vol. 261(2006), p . 101-106.

DOI: 10.1016/j.wear.2005.09.028

Google Scholar

[3] M. Antler: J. Wear. Vol. 214 (1998). pp.1-9.

Google Scholar

[4] S. Ge and K. Tonder: J. Tribology. Vol. 17 (1997), pp.73-80 (in Chinese).

Google Scholar

[5] G. Chen and S. Ge: gy. Tribology. Vol. 18 n2(1998), pp.179-184 (in Chinese).

Google Scholar

[6] H. B Liu, D.P. Wan, and D.J. Hu: J. Key. Eng. Mat. Vol. 373-374(2008), pp.762-765.

Google Scholar

[7] G.Y. Zhou, M.C. Leu and D. Blackmore: J. Wear. Vol. 170(1993) , pp.1-14.

Google Scholar

[8] L. He and J. Zhu: J. Wear. Vol. 208 (1997), pp.17-24.

Google Scholar

[9] C.A. Brown and G. Savary: J. Wear. Vol. 141(1991), pp.221-226.

Google Scholar

[10] C. Tricot, P. Ferlans and G. Baran:J. Wear. Vol. 172 (1994), pp.127-133.

Google Scholar

[11] G. Shirong and C. Gouan: J. Wear. Vol. 231(1999), P249-255.

Google Scholar

[12] W. Dehui: J. Computer Integrated Manufacturing Systems, CIMS. Vol. 13(2007), pp.1137-1141.

Google Scholar

[13] D.R. Salgado , F.J. Alonso , I. Cambero and A. Marcelo : Int. J. Adv. Manuf. Technol. Vol. 43(2009), pp.40-51.

Google Scholar

[14] H. Dong, W. Dehui, S. Haitao:C. Proc. SPIE. Int. Soc. Opt. Eng. Vol. 6280 II(2006), Third International Symposium on Precision Mechanical Measurements.

Google Scholar

[15] I.A. El-Sonbaty, U.A. Khashaba, A.I. Selmy and A.I. Ali: J. Mater. Process. Technol. Vol. 200( 2008), pp.271-278.

Google Scholar

[16] Z. Hua, G. Shirong, H. Xiaolong, Z. Dekuen and L. Jinlong: J. Wear. Vol. 255 (2003) pp.309-314.

Google Scholar

[17] D.L. Jordan, R.C. Hollins and E. Jakeman: J. Wear. Vol. 109(1986), pp.127-134.

Google Scholar

[18] A. Majumdar and C. L Tien.: J. Wear. Vol. 136(1990), pp.313-327.

Google Scholar

[19] L. Yuan, Z. Yi and X. Xiaodong: J. Proc. SPIE. Int. Soc. Opt. Eng. Vol. 6279 (2007).

Google Scholar

[20] J. Lundberg: Tribol. Int. Vol. 28(1995), pp.317-322.

Google Scholar

[21] B. Bhushan: Handbook of Micro-�ano Tribology (CRC Press, USA 1999).

Google Scholar

[22] C. Cortes and V.N. Vapnik: Support Vector networks. Machine Learning. Vol. 20(1995), p.273.

Google Scholar

[23] V. Vapnik: Statistical Learning Theory( Wiley, New York, 1998).

Google Scholar

[24] J.A.K. Suykens and J. Vandewalle: J. Neural Process. Letters. Vol. 9(1999), pp.293-300.

Google Scholar

[25] M.T. Gencoglu and M. Uyar: J. Expert Sys. Appl. Vol. 36(2009), p . 10789-10798.

Google Scholar