Structural, Optical and Electronic Properties of Cu-Doped ZnO Films Synthesized by RF Magnetron Sputtering

Article Preview

Abstract:

Zn1-xCuxO films were prepared by radio frequency (RF) magnetron sputtering method. The wurtzite ZnO crystal can be well retained up to a Cu composition of 10% and doped Cu ions substituted into Zn sites of ZnO host lattice. All the samples show high transparency over the wavelengths from 400 to 1000 nm. The room temperature (RT) resistivity shows an increase in Mn doping samples, which indicates that the doped element is at the status of deep donor levels. The decrease in the bandgap in Cu doped ZnO films rather than in pure ZnO film indicates that there are impurity bands created by Cu 3d orbital or strong d-p coupling between Cu and O in our samples. In addition, photoluminescence (PL) spectra show UV emission at ~3.19 eV shifts to lower energy side with Cu doping, indicating the possibility of band-gap engineering in Zn1-xCuxO films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

1198-1202

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoc: J Appl Phys Vol. 98 (2005), p.041301.

DOI: 10.1063/1.1992666

Google Scholar

[2] N. Hasuike, K. Nishio, T. Isshiki, K. Kisoda, and H. Harima: Phys. Stat. Sol. Vol. 6 (2009), p.213.

Google Scholar

[3] T. Dietl, H. Ohno, F. Matsukura, J. Cibért, and D. Ferrand: Science Vol. 287 (2000), p.1019.

Google Scholar

[4] K. Sato and H. Katayama-Yoshida: Jpn.J. Appl. Phys. Vol. 39 (2000), p. L555.

Google Scholar

[5] K. Ueda, H. Tabata, and Kawai: Appl. Phys. Lett. Vol. 79 (2001), p.988.

Google Scholar

[6] Z. Yin, N. Chen, C. Chai, and F. Yang: J. Appl. Phys. Vol. 96 (2004), p.5093.

Google Scholar

[7] H. Zhou, D.M. Hofmann, A. Hofstaetter, and B.K. Meyer: J. Appl. Phys. Vol. 94 (2003), p. (1965).

Google Scholar

[8] S. Deka and P.A. Joy: Appl. Phys. Lett. Vol. 89 (2006), p.032508.

Google Scholar

[9] J. Cui, Q. Zeng, and U.J. Gibson: J. Appl. Phys. Vol. 99 (2006), p. 08M113.

Google Scholar

[10] W.L. Yang, X.L. Wu, T. Qiu, G.G. Siu, and P.K. Chu: J. Appl. Phys. Vol. 99 (2006), p.074303.

Google Scholar

[11] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, and S. Koshihara: Appl. Phys. Lett. Vol. 78 (2001), p.958.

DOI: 10.1063/1.1348323

Google Scholar

[12] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, and J. Nrayan: Solid State Commun. Vol. 121 (2002), p.371.

Google Scholar

[13] S.W. Jung, S.J. An, G. Yi, U. Jung, S. Lee, and S. Cho: Appl. Phys. Lett. Vol. 80 (2002), p.4561.

Google Scholar

[14] S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl: Nature Materials Vol. 6 (2007), p.440.

DOI: 10.1038/nmat1910

Google Scholar

[15] T.C. Damen, S.P.S. Porto, B. Tell: Phys. Rev. Vol. 142 (1966), p.570.

Google Scholar

[16] T.S. Jeong, M.S. Han, C.J. Youn, and Y.S. Park: J. Appl. Phys. Vol. 96 (2004), p.175.

Google Scholar

[17] X.B. Wang, C. Song, K.W. Geng, F. Zeng, and F. Pan: Applied Surface Science Vol. 253 (2007), p.6905.

Google Scholar

[18] C. Sudakar, J.S. Thakur, G. Lawes, R. Naik, and V.M. Naik: Phys. Rev. B Vol. 75 (2007), p.054423.

Google Scholar

[19] H.J. Lee, B.S. Kim, C.R. Cho, and S.Y. Jeong: Phys. Status Solidi B Vol. 241 (2004), p.1533.

Google Scholar

[20] A. B. Djurisic and Y. H. Leung: Small Vol. 2(8-9) (2006), p.944.

Google Scholar

[21] A.A. Sokol, S.A. French, S.T. Bromley, C.R.A. Catlow, H.J.J. van Dam, and P. Sherwood: Faraday Discussions Vol. 134 (2007), p.267.

DOI: 10.1039/b607406e

Google Scholar