Synthesis and Properties of Biphasic Calcium Phosphate Prepared by Different Methods

Article Preview

Abstract:

Hydroxapatite (HA) is a stable phase with low dissolution rate in body fluid. Meanwhile, β-tricalcium phosphate (β-TCP) is rather soluble but the dissolution rate is too fast for bone bonding. Therefore a mixture of both is desirable to control the bioresorbability. In this work, calcium phosphate powder has been synthesized via sol gel and wet precipitation method to compare phase behaviour of these powders upon calcination. XRD result clearly revealed that both as-synthesized powders were pure HA with good purity. The decomposition of HA to TCP took place in the range of 700-800 °C and 800-900 °C for sol gel and wet chemical precipitation powder, respectively. The weight loss detected at 700-850°C in TGA analysis confirmed the presence of this biphasic mixtures. From FTIR analysis, profound change in OH- band intensity was attributed to the increased in HA crystallinity with calcination temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-25

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.K. Hsu, The preparation of biphasic porous calcium phosphate by the mixture of Ca(H2PO4)2. H2O and CaCO3, Mater. Chem. and Phys. 80 (2003) 409-420.

DOI: 10.1016/s0254-0584(02)00166-9

Google Scholar

[2] A.N. Natasha, I. Sopyan, S. Ramesh, Afzeri, Phase behaviour of manganese-doped biphasic calcium phosphate ceramics synthesized via sol-gel method, Asia-Pacific J. Chem. Eng. 6 (2011) 823-831.

DOI: 10.1002/apj.480

Google Scholar

[3] B. Liu, P. Lin, Y. Shen, Y. Dong, A novel sol–gel technique for hydroxyapatite preparation, J. Mater. Sci. Mater. Med. 19 (2008) 1203-1207.

Google Scholar

[4] D. Tadic, F. Beckmann, K. Schwarz, M. Epple, A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering, Biomaterial., (25) 2004 3335-3340.

DOI: 10.1016/j.biomaterials.2003.10.007

Google Scholar

[5] A. Harabi, D. Belamri, N. Karboua, F.Z. Mezahi, Sintering of bioceramics using a modified domestic microwave oven: Natural hydroxyapatite sintering, J. Therm. Anal. Calorimet. (104) 2011, 383-388.

DOI: 10.1007/s10973-010-1115-z

Google Scholar

[6] M.O. Li, X. Xiao, R. Liu, C. Chen, L. Huang, Structural characterization and zinc-substituted hydroxyapatite prepared by hydrothermal method, J. Mater. Sci.: Mater. Med. (19) 2008, 797-803.

DOI: 10.1007/s10856-007-3213-4

Google Scholar

[7] I. Sopyan, M. Mel, R. Singh, K.A. Khalid, Porous hydroxyapatite for artificial bone applications, Sci. Technol. Adv. Mater. 8 (2007) 116-123.

Google Scholar

[8] A.C. Tas, F. Korkusuz, M. Timucin, N. Akkas, An investigation of the chemical synthesis and high temperature sintering behavior of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics, J. Mater. Sci.: Mater. Med. 8 (1997) 91-96.

Google Scholar

[9] N. Kivrak, A.C. Tas, Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behaviour, J. Am. Ceram. Soc. 81 (1998) 2245-2252.

DOI: 10.1111/j.1151-2916.1998.tb02618.x

Google Scholar

[10] N. Monmaturapoj, Nano-size hydroxyapatite powders preparation by wet chemical precipitation route, J. Met. Mater. Miner. 18 (2008) 15-20.

Google Scholar

[11] A. Paz, D. Guadarrama, M. Lopez, J.E. Gonzalez, N. Brizuela, J. Aragon, A comparative study of hydroxyapatite nanoparticles synthesized by different routes, Quim Nova. 35 (2012) 1724-1727.

DOI: 10.1590/s0100-40422012000900004

Google Scholar

[12] H.W. Kim, J.C. Knowles, H.E. Kim, Effect of biphasic calcium phosphate on drug release and biological and mechanical properties of poly (ε-caprolactone) composite membranes, J. Biomed. Mater. Res. A. 70A (2004) 467-479.

DOI: 10.1002/jbm.a.30100

Google Scholar

[13] F. Wang, M. Li, Y. Lu, Y. Qi, A simple sol-gel technique for preparing hydroxyapatite nanopowders, Mater. Lett. (59) 2005 916-919.

Google Scholar

[14] K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Pressureless sintering of nanocrytalline hydroxyapatite at different temperatures, Met. Mater. Int. 16(4) (2010) 605-611.

DOI: 10.1007/s12540-010-0813-1

Google Scholar

[15] K. Seema, B. Uma, K. Suhcita, Transformations in sol-gel synthesized nanoscale hydroxyapatite calcined under different temperatures and time conditions', J. Mater. Eng and Perform., 2012, 21, 1737-1743.

DOI: 10.1007/s11665-011-0059-1

Google Scholar

[16] Z. Xiu, M. Lu, S. Liu, G. Zhou, B. Su, H. Zhang, Barium hydroxyapatite nanoparticles synthesized by citric acid sol-gel combustion method, Mater. Res. Bull. 40 (2005) 1617-1622.

DOI: 10.1016/j.materresbull.2005.04.033

Google Scholar

[17] S. Ramesh, Malaysia Patent PI 20043325. (2004).

Google Scholar

[18] S.J. Kalita, S. Verma, Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization, J. Mater. Sci. Eng. C. 30 (2010) 295-303.

DOI: 10.1016/j.msec.2009.11.007

Google Scholar

[19] R. Morrissey, L.M. Rodriguez-Lorenzo, K.A. Gross, Influence of ferrous iron incorporation on the structure of hydroxyapatite, J. Mater. Sci. Mater. Med. 16 (2005) 387– 392.

DOI: 10.1007/s10856-005-6976-5

Google Scholar

[20] A. Milev, G.S.K. Kannangara, B. Ben-Nissan, Morphological stability of hydroxyapatite precursor, Mater. Lett. 57 (2003) 1960-(1965).

DOI: 10.1016/s0167-577x(02)01112-6

Google Scholar

[21] E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, Biomimetic Mg substituted hydroxyapatite: from synthesis to in vivo behavior, J. Mater. Sci. Mater. Med. 19 (2008) 239-247.

DOI: 10.1007/s10856-006-0032-y

Google Scholar

[22] E.C. Victoria, F.D. Gnanam, Synthesis and characterization of biphasic calcium phosphate, Trends Biomater. Artif. Organs, 16 (2002) 12-14.

Google Scholar

[23] A. Rapacz-Kmita, C. Paluszkiewicz, A. Slosarczyk, Z. Paszkiewicz, FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes, J. Mol. Struct. 744-747 (2005) 653–656.

DOI: 10.1016/j.molstruc.2004.11.070

Google Scholar

[24] S. Lazic, S. Zec, N. Miljevic and S. Milonjic, The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid, Thermochim. Acta. 374 (2001) 13-22.

DOI: 10.1016/s0040-6031(01)00453-1

Google Scholar