Comparison of Endmill Tool Coating Performance during Machining of Ti6Al4V Alloy

Article Preview

Abstract:

Titanium is a hard-to-machine material. An improvement in tool life via advanced tool coating materials can lead to higher productivity of titanium. In this study, a Grade 5 Ti workpiece was milled using a diamond-like carbon coated (ta-C) cutting tool and its performance compared with the standard TiAlN coated endmill. It was found that a ta-C coated tool experienced higher cutting forces than the TiAlN coated tool; however, it showed slower rate of tool wear indicating better tool life and the possibility of achieving higher metal removal rates. Hence, it was concluded that the ta-C coated cutting tool performed better than the standard TiAlN coated tool.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-131

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Palanisamy, M.S. Dargusch, S. Sun, M.J. Bermingham, C.E. Wen, G. Wang, K. Xia and D.H. StJohn: Ti2011 – Proceedings of the 12th World Conference on Titanium Vol. 3 (2012), p.2210.

Google Scholar

[2] R.A. Rahman Rashid, M.J. Bermingham, S. Sun, G. Wang and M.S. Dargusch: Precis. Eng. Vol. 37 (2013), p.461.

Google Scholar

[3] M.J. Bermingham, S. Palanisamy and M.S. Dargusch: Int. J. Mach. Tools Manuf. Vol. 62 (2012), p.76.

Google Scholar

[4] W. Niu, M.J. Bermingham, P.S. Baburamani, S. Palanisamy, M.S. Dargusch, S. Turk, B. Grigson and P.K. Sharp: Mater. Des. Vol. 46 (2013), p.640.

DOI: 10.1016/j.matdes.2012.10.056

Google Scholar

[5] M.J. Bermingham, S. Palanisamy, D. Kent and M.S. Dargusch: J. Mater. Process. Technol. Vol. 212 (2012), p.752.

Google Scholar

[6] E.O. Ezugwu and Z.M. Wang: J. Mater. Process. Technol. Vol. 68 (1997), p.262.

Google Scholar

[7] H. Su, P. Liu, Y. Fu and J. Xu: Chin. J. Aeronaut. Vol. 25 (2012), p.784.

Google Scholar

[8] K. Oda: J. Jpn. Soc. Powder Powder Metall. Vol. 51 (2004), p.603.

Google Scholar

[9] G. Boothroyd and W.A. Knight: Fundamentals of machining and machine tools (Taylor and Francis, Boca Raton 2006).

Google Scholar

[10] J. Nedelik and B. Lux: Int. J. Refract. Met. Hard Mater. Vol. 17 (1999), p.275.

Google Scholar

[11] T. Minton, S. Ghani, F. Sammler, R. Bateman, P. Fürstmann and M. Roeder: Int. J. Mach. Tools Manuf. Vol. 75 (2013), p.27.

DOI: 10.1016/j.ijmachtools.2013.08.006

Google Scholar

[12] S. Bhowmick and A.T. Alpas: J. Manuf. Sci. Eng. Vol. 135 (2013), doi: 10. 1115/1. 4025739.

Google Scholar

[13] H. Schulz, H. -J. Scheibe, P. Siemroth and B. Schultrich: Appl. Phys. A Vol. 78 (2004), p.675.

Google Scholar

[14] S. Palanisamy, M.S. Dargusch, S.D. McDonald, M. Brandt and D.H. StJohn: Adv. Eng. Mater. Vol. 9 (2007), p.1000.

Google Scholar

[15] M.S. Dargusch, M-X. Zhang, S. Palanisamy, A.J.M. Buddery, and D.H. StJohn: Adv. Eng. Mater. Vol. 10 (2008), p.85.

Google Scholar

[16] M. Siddhpura and R. Paurobally: Aust. J. Mech. Eng. Vol. 11 (2013), p.67.

Google Scholar

[17] R.A. Rahman Rashid, S. Sun, G. Wang and M.S. Dargusch: Int. J. Mach. Tools Manuf. Vol. 63 (2012), p.58.

Google Scholar

[18] H. Zhang and W. Y Chen: Adv. Mat. Res. Vol. 188 (2011), p.416.

Google Scholar

[19] L.C. Lee, K.S. Lee and C.S. Gan: Int. J. Mach. Tools Manuf. Vol. 29 (1989), p.295.

Google Scholar

[20] P. Huang, J. Li, J. Sun and J. Zhou: Int. J. Adv. Manuf. Technol. Vol. 64 (2013), p.613.

Google Scholar

[21] D.P. Adler, W.W.S. Hii, D.J. Michalek and J.W. Sutherland: Mach. Sci. Technol. Vol. 10 (2006), p.23.

Google Scholar