[1]
S. Sarat, N. Sammes, A. Smirnova, Bismuth oxide doped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells, J. Power Sources 160 (2006) 892-896.
DOI: 10.1016/j.jpowsour.2006.02.007
Google Scholar
[2]
N.P. Brandon, A. Blake, D. Corcoran, D. Cumming, A. Duckett, K. El-Koury, et al. Development of metal supported solid oxide fuel cells for operation at 500-600 0C, J Fuel Cell Sci. Technol. 1 (2004), 61-65.
DOI: 10.1115/1.1794709
Google Scholar
[3]
N. Ai, Z. Lu, K.F. Chen, X.Q. Huang, B. Wei, Y.H. Zhang et al., Low temperature solid oxide fuel cells based on Sm 0. 2Ce0. 8 O1. 9 films fabricated by slurry spin coating, J Power Sources 159 (2006) 637-640.
DOI: 10.1016/j.jpowsour.2005.11.057
Google Scholar
[4]
S.P. Jiang, Y.J. Leng, S.H. Chan, K.A. Khor, Development of (La, Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells, Electrochem Solid State Lett. 6 (2003), A67-A70.
DOI: 10.1149/1.1558351
Google Scholar
[5]
K. Kendall, Progress in solid oxide fuel cell materials, Int. Mater. Rev. 50 (2005) 257-264.
Google Scholar
[6]
S. Nakayama and M. Sakamoto, Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy), J. Eur. Ceram. Soc. 18, 10 (1998) 1413-1418.
DOI: 10.1016/s0955-2219(98)00032-6
Google Scholar
[7]
S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki, K. Ito, Oxide ionic conductivity of apatite type Nd9. 33(SiO4)6O2 single crystal, J. Eur. Ceram. Soc. 19 (1999) 507-510.
DOI: 10.1016/s0955-2219(98)00215-5
Google Scholar
[8]
http: /nemertes. lis. upatras. gr/jspui/bitstream/10889/5563/1/H. %20Gasparyan%20PhD. pdf, (12/2011).
Google Scholar
[9]
S. Tao, J.T.S. Irvine, Preparation and characterization of apatite-type lanthanum silicates by a sol-gel process, Mater. Res. Bull. 36 (2001), 1245-1258.
DOI: 10.1016/s0025-5408(01)00625-0
Google Scholar
[10]
N.A. Toropov, I.A. Bondar, Y. Galakhov, Trans. Int. Ceram. Eighth Congr. 1962, Copenhagen, Denmark, Int. Ceram. Cong., Paris, France (1962) 85-103.
Google Scholar
[11]
S. Nakayama, T. Kageyama, H. Aono, et al., Ionic Conductivity of Lanthanide Silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb), J. Mater. Chem. 5, 11 (1995) 801-805.
DOI: 10.1039/jm9950501801
Google Scholar
[12]
S. Lambert, A. Vincent, E. Bruneton, S. Beaudet-Savignat, F. Guillet, B. Minot, F. Bouree, Structural investigation of La9. 33Si6O26- and La9AESi6O26+δ-doped apatites-type lanthanum silicate (AE=Ba, Sr and Ca) by neutron powder diffraction, J. Solid State Chem. 179 (2006).
DOI: 10.1016/j.jssc.2006.04.056
Google Scholar
[13]
L. Leon-Reina, E. R. Losilla, M. Martinez-Lara, S. Bruque, M. A. G. Aranda, Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes, J. Mater. Chem. 14 (2004) 1142-1149.
DOI: 10.1039/b315257j
Google Scholar
[14]
J. Xiang, Z. G. Liu, J. H. Ouyang, F. Y. Yan, Synthesis, structure and electrical properties of rare-earth doped apatite-type lanthanum silicates, Electrochim. Acta 65 (2012) 251-256.
DOI: 10.1016/j.electacta.2012.01.048
Google Scholar
[15]
Y. Masubuchi, M. Higuchi, T. Takeda, S. Kikkawa, Preparation of apatite-type La9. 33(SiO4)6O2 oxide ion conductor by alcoxide-hydrolysis, J. Alloy. Compnd. 408-412 (2006) 641-644.
DOI: 10.1016/j.jallcom.2004.12.097
Google Scholar
[16]
S. Celerier, C. Laberty-Robert, F. Ansart, C. Calmet, P. Stevens, J. Eur. Ceram. Soc. 25 (2005) 2665-2668.
Google Scholar
[17]
S.W. Tao, J.T.S. Irvine, Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process, Mater. Res. Bull. 36 (2001) 1245-1258.
DOI: 10.1016/s0025-5408(01)00625-0
Google Scholar
[18]
S. Qingle, L. Lihua, Z. Yanwei, Z. Hua, Influence of pH on the property of apatite-type lanthanum silicates prepared by sol-gel process, J. Wuhan Univ. Technol. - Mater. Sci. Ed (2012) 841-846.
DOI: 10.1007/s11595-012-0559-3
Google Scholar
[19]
P. J. Panteix, I. Julien, D. Bernache-Assolant, P. Abelard, Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC, Mater. Chem. Phys. 95 (2006) 313-320.
DOI: 10.1016/j.matchemphys.2005.06.040
Google Scholar
[20]
J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method, Acta Mater. 49 (2001) 419-426.
DOI: 10.1016/s1359-6454(00)00327-x
Google Scholar
[21]
E.J. Abram, D.C. Sinclair, A.R. West, A novel enhancement of ionic conductivity in the cation-deficient apatite La9. 33(SiO4)6O2, J. Mater. Chem. 11 (2001) 1978-(1979).
DOI: 10.1039/b104006p
Google Scholar
[22]
J. M. Porras-Vazquez, E. R. Losilla, L. Léon-Reina, D. Marrero-López, M. A. G. Aranda, Microstructure and oxide ion conductivity in a dense La 9. 33(SiO4)6O2 oxy-apatite, J. Am. Ceram. Soc. 92, 5 (2009) 1062-1068.
DOI: 10.1111/j.1551-2916.2009.03032.x
Google Scholar
[23]
C. Tian, J. Liu, J. Cai, Y. Zeng, Direct synthesis of La9. 33Si6O26 ultrafine powder via sol-gel self-combustion method, J. Alloy. Compnd. 458 (2008) 378-382.
DOI: 10.1016/j.jallcom.2007.03.128
Google Scholar
[24]
B. Li, J. Liu, Y. Hu, Z. Huang, Preparation and characterization of La9. 33Si6O26 powders by molten salt method for solid electrolyte application, J. Alloy. Compnd. 509 (2011) 3172-3176.
DOI: 10.1016/j.jallcom.2010.10.215
Google Scholar
[25]
http: /oatao. univ-toulouse. fr/386/2/celerier_386. pdf.
Google Scholar