Low Temperature Synthesis of Lanthanum Silicate Apatite Type by Modified Sol Gel Process

Article Preview

Abstract:

Rare earth silicate apatite type is a very important and promising material for application as an electrolyte in IT-SOFC (Intermediate Temperature Solid Oxide Fuel Cell). Lanthanum silicate apatite, La9,33Si6O26, exhibits high conductivity and has high efficiency, long term stability, fuel flexibility, low emissions and relatively low cost compared to yttria stabilized zirconia (YSZ - yttria stabilized zirconia), at temperatures between 600 to 800 °C. One of the problems of YSZ is its high operating temperature which results in long starting times and problems of mechanical and chemical compatibility. The interest of investigating lanthanum silicate apatite as an electrolyte is to overcome the problems caused by high temperature operation required by YSZ electrolyte. In the present study, sol-gel method was used to synthesize La9,33Si6O26. Initially, the reagents (sodium silicate and lanthanum nitrate) were mixed to obtain colloidal silica. Then, this gel containing lanthanum nitrate was thermally treated to allow the melting of lanthanum nitrate salt distributed on colloidal silica. The aim of this study was to verify if this method permits the formation of La9,33Si6O26 pure apatite phase, in order to obtain fine powders and uniform particles for further processing and obtaining a ceramic body.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sarat, N. Sammes, A. Smirnova, Bismuth oxide doped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells, J. Power Sources 160 (2006) 892-896.

DOI: 10.1016/j.jpowsour.2006.02.007

Google Scholar

[2] N.P. Brandon, A. Blake, D. Corcoran, D. Cumming, A. Duckett, K. El-Koury, et al. Development of metal supported solid oxide fuel cells for operation at 500-600 0C, J Fuel Cell Sci. Technol. 1 (2004), 61-65.

DOI: 10.1115/1.1794709

Google Scholar

[3] N. Ai, Z. Lu, K.F. Chen, X.Q. Huang, B. Wei, Y.H. Zhang et al., Low temperature solid oxide fuel cells based on Sm 0. 2Ce0. 8 O1. 9 films fabricated by slurry spin coating, J Power Sources 159 (2006) 637-640.

DOI: 10.1016/j.jpowsour.2005.11.057

Google Scholar

[4] S.P. Jiang, Y.J. Leng, S.H. Chan, K.A. Khor, Development of (La, Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells, Electrochem Solid State Lett. 6 (2003), A67-A70.

DOI: 10.1149/1.1558351

Google Scholar

[5] K. Kendall, Progress in solid oxide fuel cell materials, Int. Mater. Rev. 50 (2005) 257-264.

Google Scholar

[6] S. Nakayama and M. Sakamoto, Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy), J. Eur. Ceram. Soc. 18, 10 (1998) 1413-1418.

DOI: 10.1016/s0955-2219(98)00032-6

Google Scholar

[7] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki, K. Ito, Oxide ionic conductivity of apatite type Nd9. 33(SiO4)6O2 single crystal, J. Eur. Ceram. Soc. 19 (1999) 507-510.

DOI: 10.1016/s0955-2219(98)00215-5

Google Scholar

[8] http: /nemertes. lis. upatras. gr/jspui/bitstream/10889/5563/1/H. %20Gasparyan%20PhD. pdf, (12/2011).

Google Scholar

[9] S. Tao, J.T.S. Irvine, Preparation and characterization of apatite-type lanthanum silicates by a sol-gel process, Mater. Res. Bull. 36 (2001), 1245-1258.

DOI: 10.1016/s0025-5408(01)00625-0

Google Scholar

[10] N.A. Toropov, I.A. Bondar, Y. Galakhov, Trans. Int. Ceram. Eighth Congr. 1962, Copenhagen, Denmark, Int. Ceram. Cong., Paris, France (1962) 85-103.

Google Scholar

[11] S. Nakayama, T. Kageyama, H. Aono, et al., Ionic Conductivity of Lanthanide Silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb), J. Mater. Chem. 5, 11 (1995) 801-805.

DOI: 10.1039/jm9950501801

Google Scholar

[12] S. Lambert, A. Vincent, E. Bruneton, S. Beaudet-Savignat, F. Guillet, B. Minot, F. Bouree, Structural investigation of La9. 33Si6O26- and La9AESi6O26+δ-doped apatites-type lanthanum silicate (AE=Ba, Sr and Ca) by neutron powder diffraction, J. Solid State Chem. 179 (2006).

DOI: 10.1016/j.jssc.2006.04.056

Google Scholar

[13] L. Leon-Reina, E. R. Losilla, M. Martinez-Lara, S. Bruque, M. A. G. Aranda, Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes, J. Mater. Chem. 14 (2004) 1142-1149.

DOI: 10.1039/b315257j

Google Scholar

[14] J. Xiang, Z. G. Liu, J. H. Ouyang, F. Y. Yan, Synthesis, structure and electrical properties of rare-earth doped apatite-type lanthanum silicates, Electrochim. Acta 65 (2012) 251-256.

DOI: 10.1016/j.electacta.2012.01.048

Google Scholar

[15] Y. Masubuchi, M. Higuchi, T. Takeda, S. Kikkawa, Preparation of apatite-type La9. 33(SiO4)6O2 oxide ion conductor by alcoxide-hydrolysis, J. Alloy. Compnd. 408-412 (2006) 641-644.

DOI: 10.1016/j.jallcom.2004.12.097

Google Scholar

[16] S. Celerier, C. Laberty-Robert, F. Ansart, C. Calmet, P. Stevens, J. Eur. Ceram. Soc. 25 (2005) 2665-2668.

Google Scholar

[17] S.W. Tao, J.T.S. Irvine, Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process, Mater. Res. Bull. 36 (2001) 1245-1258.

DOI: 10.1016/s0025-5408(01)00625-0

Google Scholar

[18] S. Qingle, L. Lihua, Z. Yanwei, Z. Hua, Influence of pH on the property of apatite-type lanthanum silicates prepared by sol-gel process, J. Wuhan Univ. Technol. - Mater. Sci. Ed (2012) 841-846.

DOI: 10.1007/s11595-012-0559-3

Google Scholar

[19] P. J. Panteix, I. Julien, D. Bernache-Assolant, P. Abelard, Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC, Mater. Chem. Phys. 95 (2006) 313-320.

DOI: 10.1016/j.matchemphys.2005.06.040

Google Scholar

[20] J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method, Acta Mater. 49 (2001) 419-426.

DOI: 10.1016/s1359-6454(00)00327-x

Google Scholar

[21] E.J. Abram, D.C. Sinclair, A.R. West, A novel enhancement of ionic conductivity in the cation-deficient apatite La9. 33(SiO4)6O2, J. Mater. Chem. 11 (2001) 1978-(1979).

DOI: 10.1039/b104006p

Google Scholar

[22] J. M. Porras-Vazquez, E. R. Losilla, L. Léon-Reina, D. Marrero-López, M. A. G. Aranda, Microstructure and oxide ion conductivity in a dense La 9. 33(SiO4)6O2 oxy-apatite, J. Am. Ceram. Soc. 92, 5 (2009) 1062-1068.

DOI: 10.1111/j.1551-2916.2009.03032.x

Google Scholar

[23] C. Tian, J. Liu, J. Cai, Y. Zeng, Direct synthesis of La9. 33Si6O26 ultrafine powder via sol-gel self-combustion method, J. Alloy. Compnd. 458 (2008) 378-382.

DOI: 10.1016/j.jallcom.2007.03.128

Google Scholar

[24] B. Li, J. Liu, Y. Hu, Z. Huang, Preparation and characterization of La9. 33Si6O26 powders by molten salt method for solid electrolyte application, J. Alloy. Compnd. 509 (2011) 3172-3176.

DOI: 10.1016/j.jallcom.2010.10.215

Google Scholar

[25] http: /oatao. univ-toulouse. fr/386/2/celerier_386. pdf.

Google Scholar