Ferromagnetic Cluster on La2FeMnO6

Article Preview

Abstract:

The structural, magnetic and electrical transport properties of La2MnFeO6 bulk samples prepared by combustion synthesis have been investigated. The X-ray powder diffraction (XRD) patterns with Rietveld refinement at room temperature shows that samples prepared by combustion synthesis are formed in single phase with an orthorhombic structure space group Pnma (62). The temperature dependent magnetization shows a formation of ferromagnetic cluster at 150K with short range interactions and a long range ferromagnetic order below 75 K. The magnetic field dependence of the magnetization shows a typical paramagnetic behavior at room temperature and a ferromagnetic-like behavior at low temperatures. The low value of the magnetization at high magnetic field can indicate the formation of a weak ferromagnetism or a metamagnetic phase. Results of the temperature dependence of the resistivity show that the transport process in this material can be attributed to small polarons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-127

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Takura, N. Nagaosa, Science 288 (2000) 462.

Google Scholar

[2] E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344 (2001) 1.

Google Scholar

[3] G.H. Jonker, J.H. Van Santen, Physica 16 (1950) 337.

Google Scholar

[4] G.H. Jonker, Physica 22 (1956) 707.

Google Scholar

[5] C.N.R. Rao, A.K. Cheetham, Science 272 (1996) 369.

Google Scholar

[6] S. Jin, T.H. Tiefel, M.M. Cormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264 (1994) 413.

Google Scholar

[7] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71(1993) 2331; K.H. Ahn, X. W. Wu, K. Liu, C.L. Chien, Phys. Rev. B. 54, 15299 (1996).

Google Scholar

[8] Oxides with perovskite structure are described by the chemical formula ABO3, where A is usually an alkaline earth or rare earth and B is a transition metal or semi-metals.

Google Scholar

[9] J. Töpfer, J.B. Goodenough, J. Solid State Chem. 130 (1997) 117.

Google Scholar

[10] I.S. Lyubutin, T.V. Dmitrieva, A.S. Stepin, J. Exp. Theor. Phys 88 (1999) 590.

Google Scholar

[11] B. Dabrowski, J. Mais, S. Kolesnik, O. Chmaissem, J. Phys.: Conf. Ser. 303 (2011) 012057.

DOI: 10.1088/1742-6596/303/1/012057

Google Scholar

[12] P. Barrozo, J. Albino Aguiar, J. Appl. Phys. 113 (2013) 17E309.

Google Scholar

[13] Z.X. Wei, Y. Wang, J.P. Liu, C.M. Xiao, W.W. Zeng, Mat. Chem. Phys. 136 (2012) 755.

Google Scholar

[14] K. De, M. Thakur, A. Manna, S. Giri, J. Appl. Phys. 99 (2006) 013908.

Google Scholar

[15] S. D. Bhame, V. L. Joseph Joly, P. A. Joy, Phys. Rev. B 72 (2005) 054426.

Google Scholar

[16] W. Tong, B. Zhang, S. Tan, Y. Zhang, Phys. Rev. B 70 (2004) 014422.

Google Scholar

[17] O.F. de Lima, J.A.H. Coaquira, R.L. de Almeida, L.B. de Carvalho, S.K. Malik, J. Appl. Phys. 105 (2009) 013907.

Google Scholar

[18] X. Luo, B. Wang, Y. P. Sun, X. B. Zhu, W. H. Song, J. Phys.: Condens. Matter 20 (2008) 465211.

Google Scholar

[19] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, Inc., New Jersey, 2009, pp.126-127.

Google Scholar

[20] W. Khan, A.H. Naqvi, M. Gupta, S. Husain, R. Kumar, J. Chem. Phys. 135 (2011) 054501.

Google Scholar