Effects of Ca2+-Doping on the Crystal Lattice of α-Fe2O3

Article Preview

Abstract:

Samples of CayFe12-yO19 (0 ≤ y ≤ 1.0) were prepared by a proteic sol–gel process with hematite phase and clusters of M-type calcium hexaferrite. Impedance analysis showed that the resistivity increased with calcium concentration in the 0.0 < y ≤ 0.2 range, but decreased for y > 0.2. The saturation of the electrical resistivity occurred at 7.5 × 106 Ω·cm for Ca0.9Fe11.1O19. The plot of magnetization as a function of the magnetic field showed high values of saturation magnetization (40 emu/g) with low remanence (6.7 emu/g) and coercive field (320 Oe).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-121

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, seconded. Wiley-VCH, Weinheim, (2003).

Google Scholar

[2] A. Jitianu, M. Crisan, A. Meghea, I. Rau, M. Zaharescu, Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe2O3–SiO2 system, obtained by sol–gel method, J. Mater. Chem. 12 (2002) 1401-1407.

DOI: 10.1039/b110652j

Google Scholar

[3] M. Farbod, A. Movahed, I. Kazeminezhad, An investigation of structural phase transformation of monosize γ-Fe2O3 nanoparticles fabricated by arc discharge method, Mater. Lett. 89 (2012) 140-142.

DOI: 10.1016/j.matlet.2012.08.091

Google Scholar

[4] A.S. Teja, P. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progress in Crystal Growth and Charact. Mater. 55 (2009) 22-45.

DOI: 10.1016/j.pcrysgrow.2008.08.003

Google Scholar

[5] R.B. Jotania, R.B. Khomane, C.C. Chauhan, S.K. Menon, B.D. Kulkarni, Synthesis and magnetic properties of barium–calcium hexaferrite particles prepared by sol–gel and microemulsion techniques, J. Magn. Magn. Mater. 320 (2008)1095-1101.

DOI: 10.1016/j.jmmm.2007.10.032

Google Scholar

[6] C.A. Barreroa, J. Arpeb, E. Sileoc, L.C. Sáncheza, R. Zyslerd, C. Saragovi, Ni- and Zn-doped hematite obtained by combustion of mixed metal oxinates, Physica B: Condensed Matter 354 (2004) 27-34.

DOI: 10.1016/j.physb.2004.09.013

Google Scholar

[7] E.E. Sileo, D.P. Darocab, C.A. Barrero, A.L. Larralde, M.S. Giberti, C. Saragov, Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites, Chem. Geol. 238 (2007) 84-93.

DOI: 10.1016/j.chemgeo.2006.10.017

Google Scholar

[8] N. Phan, E.K. Lim, T. Kim, M. Kim, Y. Choi, B. Kim, M. Lee, A. Oh, J. Jin, Y. Chae, H. Baik, J.S. Suh, S. Haam, Y.M. Huh, K. Lee, A Highly Crystalline Manganese-Doped Iron Oxide Nanocontainer with Predesigned Void Volume and Shape for Theranostic Applications, Adv. Mater. 25 (2013).

DOI: 10.1002/adma.201300525

Google Scholar

[9] C.L. Bruzzone, R. Ingalls, Mössbauer-effect study of the Morin transition and atomic positions in hematite under pressure, Phys. Rev. B 28 (1983) 2430-2440.

DOI: 10.1103/physrevb.28.2430

Google Scholar

[10] S.V. Blazhevich, L.P. Ol'khovik, A.S. Kamzin, S.V. Chernikov, T.G. Kuzmicheva, N. V. Tkachenko, Synthesis of fine-grained calcium hexaferrite and investigation of its structural and magnetic parameters, Prot. Met. Phys. Chem. Surf. 47, 5 (2011).

DOI: 10.1134/s2070205111020055

Google Scholar

[11] S.S. Fortes, J.G.S. Duque, M.A. Macêdo, Nanocrystals of BaFe12O19 obtained by the proteic sol–gel process, Physica B 384 (2006) 88-90.

DOI: 10.1016/j.physb.2006.05.158

Google Scholar

[12] P. Shepherd, K.K. Mallick, R.J. Green, Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation, J. Magn. Magn. Mater. 311 (2007) 683-692.

DOI: 10.1016/j.jmmm.2006.08.046

Google Scholar

[13] R.B. Jotania, R.B. Khomane, C.C. Chauhan, S.K. Menon, B.D. Kulkarni, Synthesis and magnetic properties of barium–calcium hexaferrite particles prepared by sol–gel and microemulsion techniques. J. Magn. Magn. Mater. 320 (2008) 1095-1101.

DOI: 10.1016/j.jmmm.2007.10.032

Google Scholar

[14] K.G. Rewatkar, N.M. Patil, S.R. Gawali, Synthesis and magnetic study of Co–Al substituted calcium hexaferrite, Bull. Mater. Sci. 28 (2005) 585-587.

DOI: 10.1007/bf02706346

Google Scholar

[15] S. Mahboubi, A. Rajabi, A. Ataie, A. Nozari, P. Amrollahi, Synthesis and Characterization of Nano-crystalline Calcium Hexaferrite Particles by Mechano-Thermal Method, J. Supercond. Novel Magnetism 26 (2013) 1353-1356.

DOI: 10.1007/s10948-012-2090-3

Google Scholar

[16] Y.E. Mendili, J. Bardeau, N. Randrianantoandro, F. Grasset, J. Greneche, Insights into the Mechanism Related to the Phase Transition from γ‑Fe2O3 to α‑Fe2O3 Nanoparticles Induced by Thermal Treatment and Laser Irradiation, J. Phys. Chem. C 116 (2012).

DOI: 10.1021/jp308418x

Google Scholar

[17] P.P. Sarangi1, S.R. Vadera, M.K. Patra, C. Prakash, N.N. Ghosh, DC Electrical Resistivity and Magnetic Property of Single-Phase α-Fe2O3 Nanopowder Synthesized by a Simple Chemical Method, J. Am. Ceram. Soc. 92 (2009) 2425-2428.

DOI: 10.1111/j.1551-2916.2009.03213.x

Google Scholar

[18] M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method, J. Magn. Magn. Mater. 322 (2010)1720-1726.

DOI: 10.1016/j.jmmm.2009.12.013

Google Scholar

[19] N.Y. Lanjea, D.K. Kulkarni, Synthesis and characterization of CaLaFe11O19, J. Magn. Magn. Mater. 234 (2001) 114-117.

Google Scholar

[20] Y. Masubuchi, R. Saito, S. Kikkawa, Magnetoplumbite and W-type barium ferrites as magnetic mixture with hematite, J. Ceram. Soc. Japan 117 (2009) 82-84.

DOI: 10.2109/jcersj2.117.82

Google Scholar