Effects of Oxygen Doping on the Transport Properties of Hg0.82Re0.18Ba2Ca2Cu3O8+d Superconducting Polycrystals

Article Preview

Abstract:

Hg0.82Re0.18Ba2Ca2Cu3O8+d polycrystalline ceramic samples were prepared using a solid-vapour reaction technique. First, the ceramic precursor was prepared from a mixture of Ba2Ca2Cu3Ox and ReO2 powders in a molar ratio of 1:0.18. The precursor material was annealed under three different partial pressures of oxygen that consisted of a mixture of oxygen/argon in the following ratios: 5/95 (sample A), 10/90 (sample B) and 15/85 (sample C). Secondly, the precursors prepared at different O2 partial pressures were blended with HgO at a molar relationship of 1:0.82. The synthesis was carried out at 865 °C for 72 h. Moreover, analyses using X-ray powder diffraction, Scanning Electron Microscopy (SEM), and Energy Dispersion X-ray spectroscopy (EDS) were performed. These results demonstrated a similarity in the grain morphology within the samples. Using SEM images, a histogram of grain-boundary size was produced where the average junction size is represented by a gamma density distribution function. Finally, the samples were submitted to ac electrical resistivity ρ (T) under a low applied magnetic field (up to 400 Oe). Samples cut into bars approximately 7 × 1 × 1 mm3 in size were studied using a four-probe technique. The zero-resistance critical temperatures (Tcj) were determined from ρ (T) curves. The results are compared and qualitatively explained in the framework of flux trapping by superconducting grains. In our opinion, the oxygen partial pressure has a strong influence on the grain junctions and causes island structures that form defects at the grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-100

Citation:

Online since:

July 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Chen, L. Donzel, M. Lakner, W. Paul, J. Eur. Ceram. Soc. 24 (2004) 1815-1822.

Google Scholar

[2] S.E. Babcock, J.L. Vargas, Annual Rev. Mater. Sci. 25 (1995) 193-222.

Google Scholar

[3] O. Polat, J.W. Sinclair, Y.L. Zuev, J.R. Thompson, D.K. Christen, S.W. Cook, D. Kumar, Yimin Chen, V. Selvamanickam, Phys. Rev. B 84 (2011) 024519-1-024519-13.

Google Scholar

[4] A.J. Batista-Leyva, M.T.D. Orlando, L. Riveroa, R. Cobas, E. Altshuler, Physica C 383 (2003) 365-373.

DOI: 10.1016/s0921-4534(02)01346-1

Google Scholar

[5] T. Matsushita, E.S. Otabe, T. Fukunaga, K. Kuga, K. Yamafuji, K. Kimura, M. Hashimoto. IEEE Trans. Appl. Supercond. 3 (1993) 1045-1048.

DOI: 10.1109/77.233879

Google Scholar

[6] J.W. Ekin, A.I. Braginski, A.J. Panson, M.A. Janocko, D.W. Capone, N.J. Zaluzec, B. Flandermeyer, O.F. de Lima, M. Hong, J. Kwo, S.H. Liou, Appl. Phys. Lett. 62 (1987) 4821-4828.

DOI: 10.1063/1.338985

Google Scholar

[8] C.A.C. Passos, M.T.D. Orlando, G.L.L. Keller, J.L. Passamai Jr., J.A. Ferreira , E.V.L. de Mello, Physica B 404 (2009) 3123-3126.

DOI: 10.1016/j.physb.2009.07.062

Google Scholar

[9] I. Abdolhosseini, P. Kameli, H. Salamati, Jap. J. Appl. Phys. 47 (2008) 4505-4510.

Google Scholar

[10] H. Salamati, P. Kameli, Solid State Comm. 125 (2003) 407-411.

Google Scholar

[11] N.D. Browning, P.D. Enlist, D.P. Norton, M.F. Chisholm, S.J. Pennycook, Physica C 294 (1998) 183-193.

Google Scholar

[12] C.A.C. Passos, M.T.D. Orlando, F.D.C. Oliveira, P.C.M. da Cruz, J.L. Passamai Jr, C.G.P. Orlando, N.A. Eloi, H.P.S. Correa, L.G. Martinez, Supercond. Sci. Technol. 15 (2002) 1177-1183.

DOI: 10.1088/0953-2048/15/8/301

Google Scholar

[13] A. Sin, A.G. Cunha, A. Calleja, M.T.D. Orlando, F.G. Emmerich, E. Baggio-Saitovitch, M. Segarra, S. Piñol, X. Obradors, Supercond. Sci. Technol. 12 (1999) 120-127.

DOI: 10.1088/0953-2048/12/3/003

Google Scholar

[14] M.T.D. Orlando, A.G. Cunha, S.L. Bud'ko, A. Sin, L.G. Martinez, W. Vanoni, H. Belich, X. Obradors, F.G. Emmerich, E. Baggio-Saitovitch, Supercond. Sci. Technol. 13 (2000) 140-147.

DOI: 10.1088/0953-2048/13/2/304

Google Scholar

[15] L.G. Martinez, J.L. Rossi, M.T.D. Orlando, C.A.C. Passos, F.C.L. Melo, H.P.S. Corrêa, Mater. Sci. Forum 591-593 (2008) 392-396.

Google Scholar

[16] A. Sin, L. Fàbrega, M.T.D. Orlando, A.G. Cunha, S. Piñol, E. Bagio-Saitovich, X. Obradors, Physica C 328 (1999) 80-88.

DOI: 10.1016/s0921-4534(99)00550-x

Google Scholar

[17] L.E. Flores, C. Martinez, Cryogenics 36 (1996) 705-707.

Google Scholar

[18] A. Batista-Leyva R. Cobas, M.T.D. Orlando, C. Noda, E. Altshuler, Physica C 314 (1999) 73-80.

DOI: 10.1016/s0921-4534(99)00144-6

Google Scholar

[19] C.A.C. Passos, M.T.D. Orlando, A.A.R. Fernandes, F.D.C. Oliveira, D.S.L. Simonetti, J.F. Fardin, H. Belich Jr., M.M. Ferreira Jr., Physica C 419 (2005) 25-31.

DOI: 10.1016/j.physc.2004.10.017

Google Scholar

[20] C.A.C. Passos, M.T.D. Orlando, J.L. Passamai, Jr., E.V.L. de Mello, H.P.S. Correa. L.G. Martinez, Phys. Rev. B 74 (2006) 094514-1-094514-10.

Google Scholar

[21] Y. Zalaoglu, G. Yildirim, C. Terzioglu, J. Mater. Electron. 24 (2013) 239-247.

Google Scholar

[22] L.N. Bulaevskii, J.R. Clem, L.I. Glazman, A.P. Malozemoff, Phys. Rev. B, 45 (1992) 2545-2548.

Google Scholar