Magnetocrystalline Properties of Sr1.4Ba1.6Co2Fe24O41

Article Preview

Abstract:

Multiferroic Ba1.6Sr1.4Co2Fe24O41 with a Z-type hexagonal structure was obtained through the proteic sol-gel process with a single-phase, combined with thermal treatment at 1200 °C for 2 h. XRD analysis revealed the formation of a single phase, with preferential orientation in the case of a sample in pellet form. Magnetometry measurements revealed a low coercive field characteristic of Z-type hexaferrite, plus an electrical resistivity of approximately 2 × 109 Ω.cm that was considerably higher than expected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-115

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. C. Pullar, Hexagonal Ferrites: a Review of the Synthesis, Properties and applications of hexaferrite ceramics, Progress in Mater. Science. 57 (2012) 1191–1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[2] Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura and T. Kimura, Low-field magnetoelectric effect at room temperature, Nature Mater. 9 (2010) 797-802.

DOI: 10.1038/nmat2826

Google Scholar

[3] X. Wang, L. Li, Z. Gui, S. Shu, J. Zhou, Preparation and characterizations of ultrafine hexaganoal ferrite Co2Z powders, Materials Chemistry and Physics 77 (2002) 248–253.

DOI: 10.1016/s0254-0584(01)00584-3

Google Scholar

[4] V. R. Caffarena, T. Ogasawara, M. S. Pinho, J. L. L. Capitaneo, Synthesis and characterization of nanocrystalline Ba3Co0. 9Cu1. 1Fe24O41 powder and its application in the reduction of radar cross-section, Mater. Science-Poland. 25 ( 2007) 875-884.

Google Scholar

[5] X. Wang, L. Li, Z. Gui, S. Shu and J. Zhou, Preparation and characterizations of ultrafine hexaganoal ferrite Co2Z powders, Mater. Chem. And Physics. 77 (2002) 248–253.

DOI: 10.1016/s0254-0584(01)00584-3

Google Scholar

[6] H. Zhang, P. Punchaipet, E.G. Bruce, W. M. Robert, L Li, J. Zhou, Y. Wang, Z. Yue, Z. Gui, Microstructure study and hyper frequency electromagnetic characterization of novel hexagonal compounds, Microelectronics J. 34 (2003) 281–287.

DOI: 10.1016/s0026-2692(02)00193-3

Google Scholar

[7] R.C. Pullar, A.K. Bhattacharya, The synthesis and characterization of the hexagonal Z ferrite, Sr3Co2Fe24O41, from a sol-gel precursor, Materials Research Bulletin. 36 (2001) 1531–1538.

DOI: 10.1016/s0025-5408(01)00596-7

Google Scholar

[8] Smit and H. P. J. Wijn, Ferrites Philips Tech. Library, Eindhoven, (1959).

Google Scholar

[9] Y. Takada, T. Nakagawa, M. Tokunaga, Y. Fukuta, T. Tanaka, and T. A. Yamamoto, Crystal and magnetic structures and their temperature dependence of Co2Z-type hexaferrite (Ba, Sr)3Co2Fe24O41 by high-temperature neutron diffraction, J. of App. Physics. 100 (2006).

DOI: 10.1063/1.2204334

Google Scholar

[10] J. Lee, Y. Hong, S. Bae, G. S. Abo, J. Jalli, J. Park, W. Seong, S. Park, W. An, G. Kim, Broadband bluetooth antena based on Co2Z hexaferrite-glass composite, Microwave and optical technology letters. 53 (2011) 1222-1225.

DOI: 10.1002/mop.25982

Google Scholar

[11] S. Bae, Y. K. Hong, J. J. Lee, J. H. Park, J. Jalli, G. S. Abo, W. M. Seong, S. H. Park, J. S. Kum, W. K. Ahn, G. H. Kim, Dual-band ferrite chip antena for global positioning system and bluetooth applications, Microwave and optical technology letters. 53 (2011).

DOI: 10.1002/mop.25672

Google Scholar

[12] H. Zhang, L. Li, J. Zhou, Z. Yue, Z. Ma, Z. Gui, Microstructure characterization and properties of chemically synthesized Co2Z hexaferrite, Journal of the European Ceramic Society. 21 (2001) 149-153.

DOI: 10.1016/s0955-2219(00)00174-6

Google Scholar

[13] Z. Yue, L. Zhang, X. Wang, J. Zhou, Z. Gui, L. Li, Low-temperature sintered hexaferrites for high-frequency multilayer chip inductors, Journal of Alloys and Compounds, 361 (2003) 265–269.

DOI: 10.1016/s0925-8388(03)00428-6

Google Scholar

[14] D. W. Hahn, Y. H. Han, Co2Z type hexagonal ferrites prepared by sol–gel method, Materials Chemistry and Physics 95 (2006) 248–251.

DOI: 10.1016/j.matchemphys.2005.06.016

Google Scholar

[15] M. Aoyama, J. Temuujin, M. Senna, T. Masuko, C. Ando, H. Kishi, Preparation and characterization of Z-type hexaferrites, Ba3(1−x)Sr3xCo2Fe24O41 with x = 0–0. 5, via a two-step calcination with an intermediate wet milling, Journal of Electroceramics 17 (2006).

DOI: 10.1007/s10832-006-9937-6

Google Scholar

[16] J. Temuujina, M. Aoyamaa, M. Sennaa, T. Masukob, C. Andob, H. Kishib, V. Šepelakc, K. D. Beckerc, Preparation and properties of ferromagnetic Z-type hexaferrite from wet milled mixtures of intermediates, Journal of Magnetism and Magnetic Materials 311 (2007).

DOI: 10.1016/j.jmmm.2006.08.041

Google Scholar

[17] S. Kračunovska, J. Töpfer, Synthesis, sintering behavior and magnetic properties of Cu-substituted Co2Z hexagonal ferrites, Journal of Materials Science: Materials in Electronics 22 (2011) 467-473.

DOI: 10.1007/s10854-010-0161-4

Google Scholar

[18] M. J. Iqbalw, F. Liaqat, Physical and Electrical Properties of Nanosized Mn- and Cr-Doped Strontium Y-Type Hexagonal Ferrites, J. Am. Ceram. Soc. 93 (2010) 474–480.

DOI: 10.1111/j.1551-2916.2009.03385.x

Google Scholar