Magnetic Properties of YBCO/LCMO Superlattices with and without STO Interlayers

Article Preview

Abstract:

Superlattices formed of two antagonic characteristics have been broadly studied in literature mainly in order to clarify the effects of proximity and interface interactions. Here, we present a study of superlattice introducing an insulator between each superconducting and ferromagnetic layer. The electrical insulator STO, YBCO and LCMO layer are deposited by PLD method. The samples with STO show more intergrowth surface morphology, which favors the application providing better contacts between the grains. The magnetic measurements indicated higher Tc values and high anisotropy for SLs with STO, which is dependent on the relative thickness of LCMO and YBCO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-105

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mannhart, D. G. Schlom, Oxide interfaces - An opportunity for electronics, Science 327 (2010) 1607.

DOI: 10.1126/science.1181862

Google Scholar

[2] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura Emergent phenomena at oxide interface, Nature Mater. 11 (2012) 103.

DOI: 10.1038/nmat3223

Google Scholar

[3] S. A. Fedoseev, A. V. Pan, S. Rubanov, I. A. Golovchanskiy, O. V. Shcherbakova, Large, controllable spikes of magnetoresistance in LCMO/STO superlattices, ACS Nano 7(2013) 286.

DOI: 10.1021/nn304127n

Google Scholar

[4] O. Morán, F. Perez, W. Saldarriaga, K. Gross, E. Baca, Magnetic anisotropic behaviour in epitaxial LCMO/YBCO/LCMO and LCMO/LCMO/YBCO trilayered structures, J Appl Phys 103 (2008) 07F724.

DOI: 10.1063/1.2837875

Google Scholar

[5] V. K. Malik, I. Marozau, S. Das, B. Doggett, D. K. Satapathy, M. A. Uribe-Laverde, N. Biskup, M. Varela, C. W. Schneider, C. Marcelot, J. Stahn, C. Bernhard Pulsed laser deposition growth of heteroepitaxial YBCO/LCMO superlattices on NGO and SLATO substrates, Phys Rev B 85 (2012).

Google Scholar

[6] Z. L. Zhang, U. Kaiser, S. Soltan, H. -U. Habermeier, B. Keimer Magnetic properties and atomic structure of LCMO-YBCO heterointerfaces, Appl Phys Lett 95 (2009) 242505.

DOI: 10.1063/1.3274044

Google Scholar

[7] A. V. Pan, S. Pysarenko, S.X. Dou Drastic improvement of structure and current-carrying ability in YBCO films by introducing multilayered structure, Appl Phys Lett 88 (2006) 232506.

DOI: 10.1063/1.2211051

Google Scholar

[8] A. V. Pan, S.V. Pysarenko, D. Wexler, S. Rubanov, S.X. Dou Multilayering and Ag-doping for properties and performance enhancement in YBCO films, IEEE Trans. Appl. Supercond. 17 (2007) 3585.

DOI: 10.1109/tasc.2007.899033

Google Scholar

[9] V. Peña, N. Nemes, J. Garcia-Barriocanal, Z. Sefrioui, C. Leon, S.G.E. Te Velthuis, A. Hoffmann, M. Garcia-Hernandez, J.L. Martinez, J. Santamaria Large magnetoresistance at oxide LCMO and YBCO interfaces, Phys Rev B 69 (2004) 224502.

DOI: 10.1557/proc-0887-q11-02

Google Scholar

[10] G. Deutscher; F. Meunier Coupling Between Ferromagnetic Layers Through a Superconductor , Phys Rev Lett 22 (1969) 395.

DOI: 10.1103/physrevlett.22.395

Google Scholar

[11] S. Soltan; J. Albrecht; H. -U. Habermeier; Ferromagnetic/superconducting bilayer structure: A model system for spin diffusion length estimation , Phys Rev B 70 (2004) 144517.

DOI: 10.1103/physrevb.70.144517

Google Scholar

[12] D.A. Luzhbin; A.V. Pan; V.A. Komashko, V.S. Flis, V.M. Pan, S.X. Dou, P. Esquinazi Origin of paramagnetic magnetization in field-cooled YBCO films, Phys. Rev. B. 69(2004) 024506.

Google Scholar