Influence of the Zn Dopant in Structural and Electrical Properties of the La2Ni1-xZnxO4

Article Preview

Abstract:

In this work, we present results of synthesis, electric and structural characterization of Ruddlesden- Popper Lan+1Nin-xZnxO3n+1 (n =1, 0<x<0.4) compounds. The samples were synthesized by combustion reaction method by using citric acid as fuel. The precursors obtained from this reaction were treated for 12 hours at 1100 °C in air. The polycrystalline samples were characterized by X-ray diffraction (XRD) and electric resistivity. The XRD results indicate that samples were obtained with single phase in the orthorhombic symmetry and space group I4/mmm. The preliminary results suggest that the Zn-doping plays an important role on the charge transport and modifies the manner that the holes are arranged in the system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-80

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Zhou, G. Chen, H.J. Zhang, C. Zhou, Physica B 404 (2009) 4150-4154.

Google Scholar

[2] J.G. Bednorz, K.A. Muller, Zeitschrift fur Physik B 64 (1986) 89.

Google Scholar

[3] E.N. Naumovich, M.V. Patrakeev, V.V. Kharton, A.A. Yaremchenko, D.I. Logvinovich, F.M.B. Marques, Solid State Sci. 7 (2005) 1353-1362.

DOI: 10.1016/j.solidstatesciences.2005.08.005

Google Scholar

[4] Hong-Seok Kim, Han-Ill Yoo, Phys. Chem. Chem. Phys. 12 (2010) 4704-4713.

Google Scholar

[5] P. Briois, F. Perry, A. Billard, Thin Solid Films 516 (2008) 3282-3286.

DOI: 10.1016/j.tsf.2007.08.107

Google Scholar

[6] A.L. Shaula, E.N. Naumovich, A.P. Viskup, V.V. Pankov, A.V. Kovalevsky, V.V. Kharton, Solid State Ionics 180 (2009) 812-816.

DOI: 10.1016/j.ssi.2009.01.005

Google Scholar

[7] T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, Phys. Chem. Chem. Phys. 11 (2009) 3055-3062.

Google Scholar

[8] C.N.R. Rao, D. Buttrey, N. Outsuka, P. Ganguly, H.R. Harrison, C.J. Sandberg, J.M. Honig, J. Solid State Chem. 51 (1984) 266-269.

DOI: 10.1016/0022-4596(84)90342-6

Google Scholar

[9] K. K. Singh, P. Ganguly, J. B Goodenough, J. Solid State Chem. 52 (1984) 254-273.

Google Scholar

[10] P. Ganguly, C.N.R. Rao, Mater. Res. Bull. 8 (1973) 405-412.

Google Scholar

[11] N. Poirot, F. Gervais, Mater. Sci. Eng. 104 (2003) 145-149.

Google Scholar

[12] T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima, Y. Tokura, Phys. Rev. B 54 (1996) 14230-14233.

Google Scholar

[13] Y.G. Pashkevich, V.A. Blinkin, V.P. Gnezdilov, V.V. Tsapenko, V.V. Eremenko, P. Lemmens, M. Fischer, M. Grove, G. Guntherodt, L. Degiorgi, P. Wachter, J.M. Tranquada, D.J. Buttrey, Phys. Rev. Lett. 84 (2000) 3919-3922.

DOI: 10.1016/s0921-4526(99)02717-9

Google Scholar

[14] J.M. Tranquada, K. Nakajima, M. Braden, L. Pintschovius, R.J. Mc-Queeney, Phys. Rev. Lett. 88 (2002) 075505/1-075505/4.

Google Scholar

[15] S.H. Lee, S.W. Cheong, K. Yamada, C.F. Majkrzak, Phys. Rev. B 63 (2001) 060405/1-060405/4.

Google Scholar

[16] L. Bleicher, J.M. Sasaki, C.O. Paiva-Santos, J. Appl. Crystallogr. 33 (2000) 1189.

Google Scholar

[17] N. Poirot, V. T. Phuoc, G. Gruener, F. Gervais, Solid State Sci. 7 (2005) 1157–1162.

DOI: 10.1016/j.solidstatesciences.2005.06.005

Google Scholar