Research on Thermal Balance with One-Dimensional Zero-Range Process Model (ZRP) and Dynamics

Article Preview

Abstract:

We introduce a one-dimensional Zero-Range Process model (ZRP) and dynamics to describe the condensation. We concern the critical density when the system get the thermal balance in the ZRP. A new parameter is introduced and discussed. and by using the local coffecient,we can get the critical density which is accord with theoretically critical density with a method of numerical simulation in the system with random updating rule.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-198

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Spitzer F, Interaction of Markov processes[D]. adv. Math. 5 246(1970).

Google Scholar

[2] Evans M R. Phase transitions in one-dimensional nonequilibrium systems[J]. Braz.J. Phys. 30, 42(2000).

Google Scholar

[3] Evans M R, Hanney T. Nonequilibrium statistical mechanics of the zero-range process and related models[J], J. Phys. A: Math. Gen. 38 R195(2005).

DOI: 10.1088/0305-4470/38/19/r01

Google Scholar

[4] Schmittmann B, Zia R P K. Phase Transitions and Critical Phenomena[J]. vol 17 (London: Academic Press)(1995).

Google Scholar

[5] Schutz G M. Critical phenomena and universal dynamics in onedimensional driven diffusive systems with two species of particles[J]. Phys. A: Math. Gen. 36 R339 (2003).

DOI: 10.1088/0305-4470/36/36/201

Google Scholar

[6] O'Loan O J, Evans M R and Cates M , E, Jamming tranaition in a homogeneous one-dimensional system: The bus route model, Phys[J]. Rev. E 58, 1404(1998).

DOI: 10.1103/physreve.58.1404

Google Scholar

[7] Bialas P, Burda Z, Johnston D. Condensation in the Backgammon model [J]. Nuclear Physics B 493 505(1997).

DOI: 10.1016/s0550-3213(97)00192-2

Google Scholar

[8] Levine E, Mukamel D, Schutz G M. Zero-range process with open boundaries[J].J. Stat. Phys. 120 759(2005).

DOI: 10.1007/s10955-005-7000-7

Google Scholar