[1]
Dowell EH, Hall K C. Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 2001, 33: 445 - 490.
Google Scholar
[2]
Badcock K J, Timme S, Marques S, et al. Transonic aeroelastic simulation for instability searches and uncertainty analysis Progress in Aerospace Sciences 2011, 47: 392-423.
DOI: 10.1016/j.paerosci.2011.05.002
Google Scholar
[3]
Dowell E H. Some recent advances in nonlinear aeroelasticity: fluid-structure interaction in the 21st century. AIAA 2010-3137, (2010).
Google Scholar
[4]
Silva W A . Identification of linear and nonlinear aerodynamic impulse responses using digital filter techniques. AIAA 1997-3712, (1997).
DOI: 10.2514/6.1997-3712
Google Scholar
[5]
Earl H. Dow ell, Kenneth C. Hall, Jeffrey P. Thomas, and et al . Reduced Order Model in Unsteady Aerodynamics[ C] . AIAA-99-1261.
Google Scholar
[6]
Volterra V. Theory of Functional and of Integral And Itegro-differential Equations. New York: Dover Publications, (1959).
Google Scholar
[7]
Wiener N. Response of a nonlinear device to noise. MIT Technical Report 129.
Google Scholar
[8]
1942SilvaW A. Discrete-Time Linear and Nonlinear Aerodynamic Impulse Responses for Efficient CFD Analysis [D] . PH. D dissertation, College of William& Mary, December (1997).
Google Scholar
[9]
Silva W A. Application of nonlinear systems theory to transonic unsteady aerodynamic responses. Journal of Aircraft, 1993, 30(5): 660-668.
DOI: 10.2514/3.46395
Google Scholar
[10]
Romanowski M C, Dowell E H. Using eigenmodes to form an efficient Euler based unsteady aerodynamics analysis. ASME Int Mech Eng Congress and Exposition, Chicago, IL, Nov, (1994).
Google Scholar
[11]
Lucia D J, Beran P S. Projection methods for reduced order models of compressible flows. J Comput Phys, 2003, 188(1): 252-280.
DOI: 10.1016/s0021-9991(03)00166-9
Google Scholar
[12]
Thomas J P, Dowell E H, Hall K C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter and limit cycle oscillations. AIAA Journal, 2002, 40(4): 638-646.
DOI: 10.2514/3.15109
Google Scholar
[13]
Dimitriadis G. Continuation of higher-order harmonic balance solutions for nonlinear aeroelastic systems. Journal of aircraft, 2008, 45(2): 523-537.
DOI: 10.2514/1.30472
Google Scholar