[1]
J.M. McGlade, Advanced Ecology Theory: Princples and Applications. Blackwell Scientific Publications. OXford. (1999).
Google Scholar
[2]
V.A.A. Jansen, De Roos, The dynamics of the two diffusively coupled predator-prey populations, Theoret. Popul. Biol. 59(2000)119-131.
DOI: 10.1006/tpbi.2000.1506
Google Scholar
[3]
K.S. Cheng, Uniqueness of a limit cycle for predator-prey system. SIAM J. Math. Anal. 12(4)(1981)541-548.
DOI: 10.1137/0512047
Google Scholar
[4]
G.W. Harrison, Global stability of a predator-prey interactions. J. Math. Biol. 8(1979)39-17.
Google Scholar
[5]
M. Hessaraki, S.M. Moghadas, Existence of limit cycles for predator-prey systems with a class of functional responses. Ecol. Model. 142(2001)1-9.
DOI: 10.1016/s0304-3800(00)00442-7
Google Scholar
[6]
E. S´ez, E. Gonz´lez-Olivares, Dynamics of a preator-prey model. SIAMaaJ. Appl. Math. 59(5)(1999)1867-1878.
Google Scholar
[7]
J. Sagie, R. Kohno, R. Miyazki, On a predator-prey sytem of Holling type. Proc. Am. Math. Soc. 125(7)(1979)2041-(2059).
Google Scholar
[8]
D. Sunhong, On a kind of predator-prey system. SIAM J. Math. Anal. 20(6)(1989)1426-1435.
DOI: 10.1137/0520092
Google Scholar
[9]
M. De Roos, E. Mccauly, W.G. Wilson, Mobility versus density-limited predator-prey sunamics. SIAM J. Math. Anal. 33(8)(1991)83-91.
Google Scholar
[10]
S.E. Jogensen, C.P. Bernarel, Milan Straskraba, C. Song, E. Curtis, Woodcock, A regional forest ecosystem carbon budeget model: impact of forest age structure and landuse history. Ecol. Model. 164(2003)3-47.
DOI: 10.1016/s0304-3800(03)00013-9
Google Scholar
[11]
X. Song, L. Chen, Optimal harvesting and stability for a two sepecise competetive system with stage structure. Math. Biosci. 170(2001)173-186.
Google Scholar
[12]
X. Song, L. Chen, A predator-prey system with stage-structured and havesting for prey. Acta Math. Appl. Son. 18(3)(2002)423-430.
Google Scholar
[13]
X. Zhang, L. Chen, U.A. Numan, The stage-structured predator-prey model and optimal havesting policy. Math. Biosci. 168(2000)201-210.
DOI: 10.1016/s0025-5564(00)00033-x
Google Scholar
[14]
W. Aiello, H. Freedman, A tiem delay model of single-species growth with stage structure. Math. Biosci. 101(1990)139-153.
DOI: 10.1016/0025-5564(90)90019-u
Google Scholar
[15]
S.A. Gourky, Y. Kuang, A stege-structured predator-prey model and it's dependence on maturation delay and death rate. J. Math. Biol. 49(2004)188-200.
DOI: 10.1007/s00285-004-0278-2
Google Scholar
[16]
M. Bandyopadhyay, S. Banerjee, A stage-structured prey-predator model with discrete time delay. J. Math. Biol. 52(2006)201-215.
Google Scholar
[17]
F. Brauer, Z. Ma, Stability of a stege-sturctured population models. J. Math. Anal. Appl. 126( 1987)301-615.
Google Scholar
[18]
C.S. Holling, Some characteristics of simple types of predation and parasitism. The Can. Entomol. 91(1959)385-398.
DOI: 10.4039/ent91385-7
Google Scholar
[19]
G.D. Ruxton, Short term refuge use and stability of predator-prey models. Theor. Popul. Biol. 47(1995)1-17.
DOI: 10.1006/tpbi.1995.1001
Google Scholar
[20]
W.W. Murdoch, A. Oater, Predation and population stability. Adv. Ecol. Res. 9(1975)2-132.
Google Scholar
[21]
A. Sih, Prey refuges and predator-prey stability. Theor. Popul. Biol. 31(1987)1-12.
DOI: 10.1016/0040-5809(87)90019-0
Google Scholar
[22]
A. Sih, J.W. Petranka, L.B. Kats, The dynamics of prey refuges use: a model and tests with Sunfish and Salamanders Larvae. The Am. Naturalist. 132(4)(1988)463-483.
DOI: 10.1086/284865
Google Scholar
[23]
E. Gonz´lea-Olivares, R. Ramos-Jiliberto, Dynamics consrquences ofa prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166(2003)135-146.
DOI: 10.1016/s0304-3800(03)00131-5
Google Scholar
[24]
J.B. Colling, Birfurcation and stability analysis of predator-prey interaction model incorperating a prey refuge. Bull. Math. Biol. 57(1995)63-76.
DOI: 10.1016/0092-8240(94)00024-7
Google Scholar
[25]
A.R. Ives, A.P. Dobson, Antipredator behavior and the population dynamics of a simple predator-prey system. Am. naturalist. 130(1987)431-447.
DOI: 10.1086/284719
Google Scholar