Data Processing for Dynamic Consequences of Prey Refuge in a Predator-Prey System with Stage Structure and Time Delay

Article Preview

Abstract:

—In this paper, the effect of prey refuge on the dynamic consequences of the stage-structured predator-prey system with time delay are studied. The results indicate that the prey refuge play an important role in population dynamics, the extinction and coexistence of predator and prey population. The results show that the equilibrium density of immature and mature prey populations increase with increasing in prey refuge and the prey refuge has a clearly stabilizing effect on the predator-prey system with stage structure and time delay under a restricted set of conditions. The Data process is also analysized and obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-93

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. McGlade, Advanced Ecology Theory: Princples and Applications. Blackwell Scientific Publications. OXford. (1999).

Google Scholar

[2] V.A.A. Jansen, De Roos, The dynamics of the two diffusively coupled predator-prey populations, Theoret. Popul. Biol. 59(2000)119-131.

DOI: 10.1006/tpbi.2000.1506

Google Scholar

[3] K.S. Cheng, Uniqueness of a limit cycle for predator-prey system. SIAM J. Math. Anal. 12(4)(1981)541-548.

DOI: 10.1137/0512047

Google Scholar

[4] G.W. Harrison, Global stability of a predator-prey interactions. J. Math. Biol. 8(1979)39-17.

Google Scholar

[5] M. Hessaraki, S.M. Moghadas, Existence of limit cycles for predator-prey systems with a class of functional responses. Ecol. Model. 142(2001)1-9.

DOI: 10.1016/s0304-3800(00)00442-7

Google Scholar

[6] E. S´ez, E. Gonz´lez-Olivares, Dynamics of a preator-prey model. SIAMaaJ. Appl. Math. 59(5)(1999)1867-1878.

Google Scholar

[7] J. Sagie, R. Kohno, R. Miyazki, On a predator-prey sytem of Holling type. Proc. Am. Math. Soc. 125(7)(1979)2041-(2059).

Google Scholar

[8] D. Sunhong, On a kind of predator-prey system. SIAM J. Math. Anal. 20(6)(1989)1426-1435.

DOI: 10.1137/0520092

Google Scholar

[9] M. De Roos, E. Mccauly, W.G. Wilson, Mobility versus density-limited predator-prey sunamics. SIAM J. Math. Anal. 33(8)(1991)83-91.

Google Scholar

[10] S.E. Jogensen, C.P. Bernarel, Milan Straskraba, C. Song, E. Curtis, Woodcock, A regional forest ecosystem carbon budeget model: impact of forest age structure and landuse history. Ecol. Model. 164(2003)3-47.

DOI: 10.1016/s0304-3800(03)00013-9

Google Scholar

[11] X. Song, L. Chen, Optimal harvesting and stability for a two sepecise competetive system with stage structure. Math. Biosci. 170(2001)173-186.

Google Scholar

[12] X. Song, L. Chen, A predator-prey system with stage-structured and havesting for prey. Acta Math. Appl. Son. 18(3)(2002)423-430.

Google Scholar

[13] X. Zhang, L. Chen, U.A. Numan, The stage-structured predator-prey model and optimal havesting policy. Math. Biosci. 168(2000)201-210.

DOI: 10.1016/s0025-5564(00)00033-x

Google Scholar

[14] W. Aiello, H. Freedman, A tiem delay model of single-species growth with stage structure. Math. Biosci. 101(1990)139-153.

DOI: 10.1016/0025-5564(90)90019-u

Google Scholar

[15] S.A. Gourky, Y. Kuang, A stege-structured predator-prey model and it's dependence on maturation delay and death rate. J. Math. Biol. 49(2004)188-200.

DOI: 10.1007/s00285-004-0278-2

Google Scholar

[16] M. Bandyopadhyay, S. Banerjee, A stage-structured prey-predator model with discrete time delay. J. Math. Biol. 52(2006)201-215.

Google Scholar

[17] F. Brauer, Z. Ma, Stability of a stege-sturctured population models. J. Math. Anal. Appl. 126( 1987)301-615.

Google Scholar

[18] C.S. Holling, Some characteristics of simple types of predation and parasitism. The Can. Entomol. 91(1959)385-398.

DOI: 10.4039/ent91385-7

Google Scholar

[19] G.D. Ruxton, Short term refuge use and stability of predator-prey models. Theor. Popul. Biol. 47(1995)1-17.

DOI: 10.1006/tpbi.1995.1001

Google Scholar

[20] W.W. Murdoch, A. Oater, Predation and population stability. Adv. Ecol. Res. 9(1975)2-132.

Google Scholar

[21] A. Sih, Prey refuges and predator-prey stability. Theor. Popul. Biol. 31(1987)1-12.

DOI: 10.1016/0040-5809(87)90019-0

Google Scholar

[22] A. Sih, J.W. Petranka, L.B. Kats, The dynamics of prey refuges use: a model and tests with Sunfish and Salamanders Larvae. The Am. Naturalist. 132(4)(1988)463-483.

DOI: 10.1086/284865

Google Scholar

[23] E. Gonz´lea-Olivares, R. Ramos-Jiliberto, Dynamics consrquences ofa prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166(2003)135-146.

DOI: 10.1016/s0304-3800(03)00131-5

Google Scholar

[24] J.B. Colling, Birfurcation and stability analysis of predator-prey interaction model incorperating a prey refuge. Bull. Math. Biol. 57(1995)63-76.

DOI: 10.1016/0092-8240(94)00024-7

Google Scholar

[25] A.R. Ives, A.P. Dobson, Antipredator behavior and the population dynamics of a simple predator-prey system. Am. naturalist. 130(1987)431-447.

DOI: 10.1086/284719

Google Scholar