Method of High Active Preparation and Electrical Properties of CuFeO2 Delafossite-Type

Article Preview

Abstract:

In this paper, the CuFeO2 compound were prepared by classical solid state reaction (CSSR) and direct powder dissolved solution (DPDS) method from starting material metal oxides and metal powders. Preparation of two methods shows that, direct powder dissolved solution faster recover phases than classical solid state reaction method. The fastest method gets from starting materials Cu and Fe metal powders, the electrical conductivity, Seebeck coefficient, carrier concentration and mobility are 10.68 S/cm, 244.59 μV/K, 12.86×1016 cm-3 and 494.96 cm2/V.s, respectively. In addition, each CuFeO2 compounds were investigated on crystal structure and electrical properties. From XRD and SEM results, all samples have a crystal structure delafossite-typeand a large grain boundary more than 15 μm by electrical conductivity corresponds to grain boundary and lattice parameter: a increases. Within this paper, from above results exhibit that preparation CuFeO2 from Cu and Fe by direct powder dissolved solution method most appropriate for thermoelectric oxide materials due to high active for preparation else high lattice strain and high power factor are 0.00052 and 0.64×10-4 W/mK2, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-306

Citation:

Online since:

June 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nozaki, K. Hayashi, T. Kajitani, Thermoelectric Properties of Delafossite-Type Oxides CuFe1-xMxO2 (0. 0≤x≤0. 05). J Chem Eng Jpn. 40 (2007) 1205-1209.

DOI: 10.1252/jcej.07we146

Google Scholar

[2] M. Younsi, A. Aider, A. Bouguelia, M. Trari, Visible light-induced hydrogen over CuFeO2 via oxidation. Sol Energy 78 (2005) 574-580.

DOI: 10.1016/j.solener.2004.01.012

Google Scholar

[3] O. A. Petrenko, G. Balakrishnan, M. R. Lees, D. M. Paul, A. Hoser, High-magnetic-field behavior of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B. 62 (2000) 8983-8988.

DOI: 10.1016/s0304-8853(00)00730-7

Google Scholar

[4] S. Yamanaka, H. Kobayashi, K. Kurosaki, Thermoelectric properties of layered rare earth copper oxides. J Alloy Compd. 349 (2003) 321-324.

DOI: 10.1016/s0925-8388(02)00917-9

Google Scholar

[5] R. D. Shannon, D. B. Rogers, C. T. Prewitt, J. L. Gillson, Chemistry of Noble Metal Oxides. III. Electrical Transport Properties and Crystal Chemistry of ABO2 Compounds with the Delafossite Structure. Inorg Chem 10 (1971) 723-727.

DOI: 10.1021/ic50098a013

Google Scholar

[6] F. A. Benko, F. P. Koffyberg, Opto Electronic Properties of p-Type and n-Type Delafossite, CuFeO2. J Phys Chem Solids. 48 (1987) 431-434.

DOI: 10.1016/0022-3697(87)90103-x

Google Scholar

[7] K. Hayashi, T. Nozaki, T. Kajitani, Structure and High Temperature Thermoelectric Properties of Delafossite-Type Oxide CuFe1-xNixO2 (0. 0≤x≤0. 05). J Chem Eng Jpn. 46 (2007) 5226-5229.

DOI: 10.1252/jcej.07we146

Google Scholar

[8] C. Ruttanapun, A. Wichainchai, W. Prachamon, A. Yangthaisong, A. Charoenphakdee, T. Seetawan, Thermoelectric properties of Cu1−xPtxFeO2 (0. 0≤x≤0. 05) delafossite-type transition oxide. J Alloy Compd. 509 (2011) 4588-4594.

DOI: 10.1016/j.jallcom.2011.01.113

Google Scholar

[9] K. Park, K. Y. Ko, H. C. Kwon, S. Nahm, Improvement in thermoelectric properties of CuAlO2 by adding Fe2O3. J Alloy Compd. 437 (2007) 1-6.

DOI: 10.1016/j.jallcom.2006.07.067

Google Scholar

[10] A. Maignan, V. Eyert, C. Martin, S. Kremer, R. Frésard, D. Pelloquin, Electronic structure and thermoelectric properties of CuRh1−xMgxO2. Phys Rev B. 80 (2009) 115103-(1-9).

Google Scholar

[11] J. Tate, M. K. Jayaraj, A. D. Draeseke, T. Ulbrich, A. W. Sleight, K. A. Vanaja, R. Nagarajan, J. F. Wager, R. L. Hoffman, p- Type oxides for use in transparent diodes. Thin Solid Films. 411 (2002) 119-124.

DOI: 10.1016/s0040-6090(02)00199-2

Google Scholar

[12] K. Hayashi, K. I. Sato, T. Nozaki, T. Kajitani, Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2. Jpn J Appl Phys. 47 (2008) 59-63.

DOI: 10.1143/jjap.47.59

Google Scholar

[13] A. K. Zak, W. H. Majid, X- ray analysis of ZnO nanoparticles by Williams-Hall and size-strain plot Methods. Solid State Sci. 13 (2011) 251-256.

DOI: 10.1016/j.solidstatesciences.2010.11.024

Google Scholar

[14] R. D. Shannon, D. B. Rogers, C. T. Prewitt, Chemistry of Noble Metal Oxides. I. Syntheses and Properties of ABO2 Delafossite Compounds. Inorg Chem. 10 (1971) 713-718.

DOI: 10.1021/ic50098a011

Google Scholar

[15] C. T. Prewitt, R. D. Shannon, D. B. Rogers, Chemistry of Noble Metal Oxides. II. Crystal Structures of PtCoO2, PdCoO2, CuFeO2, and AgFeO2. Inorg Chem. 10 (1971) 719-723.

DOI: 10.1021/ic50098a012

Google Scholar

[16] T. R. Zhao, M. Hasegawa, H. Takei, Growth and characterization of CuFeO2 single crystals. J Crystal Growth, 154 (1995) 322-328. 154 (1995) 322-328.

DOI: 10.1016/0022-0248(95)00172-7

Google Scholar

[17] T. Nozaki, K. Hayashi, T. Kajitani, High Temperature Thermoelectric Properties of Delafossite-Type Oxides CuFe0. 98M0. 02O2 (M=Mg, Zn, Ni, Co, Mn, or Ti). ICT 2007: 167-170.

DOI: 10.1109/ict.2007.4569449

Google Scholar

[18] G. C. Jain, W. B. Berry, Transport Properties of Solids and Solid State Energy Conversion. Tata McGraw-Hill, New Delhi, (1972).

Google Scholar