Comparison of the Stress-Strain Behaviour of Cast TiAl6V4, Porous TiAl6V4 and Cortical Bone during the Mechanical Load Caused by Common Daily Activities

Article Preview

Abstract:

This paper deals with FEM analysis of six models that represents human cortical bone, cast TiAl6V4 alloy and porous TiAl6V4 with different pore diameters. Reliable data for the simulations were achieved by meta-analysis that consisted from 53 scientific works. Strain value was chosen with a respect to the frequent daily activities such as walking. According to the FEM analysis of presented models von Mises stress values and stress concentration factors were similar for human cortical bone and porous TiAl6V4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Barbas, A.S. Bonnet, P. Lipinski, R. Pesci, G. Dubois, Development and mechanical characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Medical Materials 9 (2012) 34 – 44.

DOI: 10.1016/j.jmbbm.2012.01.008

Google Scholar

[2] Z. Esen, E.T. Bor, S. Bor, Characterization of loose powder sintered porous titanium and Ti6Al4V alloy. Turkish Journal of Engineering Environmental Science 33 (2009) 207 – 219.

Google Scholar

[3] I. Watanabe, M. McBride, P. Newton, K.S. Kurtz, Laser surface treatment to improve mechanical properties of cast titanium. Dental Materials 25 (2009) 629–633.

DOI: 10.1016/j.dental.2008.11.006

Google Scholar

[4] J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials 3 (2010) 249 – 259.

DOI: 10.1016/j.jmbbm.2009.10.006

Google Scholar

[5] X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R. B Wicker, Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials 16 (2012).

DOI: 10.1016/j.jmbbm.2012.10.005

Google Scholar

[6] M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti 29Nb 13Ta–4. 6Zr. Biomaterials 24 (2003) 2673–2683.

DOI: 10.1016/s0142-9612(03)00069-3

Google Scholar

[7] T.,J. Webster, C. Ergun, R.H. Doremus, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21 (17) (2000) 1803–1810.

DOI: 10.1016/s0142-9612(00)00075-2

Google Scholar

[8] F. Rupp, L. Scheideler, D. Rehbein, D. Axmann, Geis-Gerstorfer, Journal of Biomaterials 25 (2004) 1429–1438.

DOI: 10.1016/j.biomaterials.2003.08.015

Google Scholar

[9] S. Bauer, P. Schmuki, K. Mark, J. Park, Engineering biocompatible implant surfaces Part I: Materials and surfaces. Progress in Materials Science 58 (2013) 261–326.

DOI: 10.1016/j.pmatsci.2012.09.001

Google Scholar

[10] T. Traini, C. Mangano, R.L. Sammons, F. Mangano, A. Macchi, A. Piattelli, Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials 24 (2008).

DOI: 10.1016/j.dental.2008.03.029

Google Scholar

[11] J. Gallo, J. Losták, K. Langová, Long-term survival of the uncemented Balgrist cup. International Orthopaedics, 37(8): 1449-1456, (2013).

DOI: 10.1007/s00264-013-1946-x

Google Scholar

[12] J. Gallo, S.B. Goodman, Y. Konttinen, M. Wimmer, M. Holinka, Osteolysis around total knee arthroplasty. A review of pathogenetic mechanisms. Acta Biomaterialia 9 (2013) 8046-8058.

DOI: 10.1016/j.actbio.2013.05.005

Google Scholar

[13] C. Nich, Y. Takakubo, J. Pajarinen, M. Ainola, A. Salem, T. Sillat, A. Rao, M. Raška, Y. Tamaki, M. Takagi, Y. Konttinen, S.B. Goodman, J. Gallo, Macrophages – Key cells in the response to wear debris from joint replacements. Journal of Biomedical Materials Research. Part A, 101 (2013).

DOI: 10.1002/jbm.a.34599

Google Scholar

[14] Q. Xu, B. Gabbitas, S. Matthews, Influence of porosity on mechanical behaviour and gas permeability of Ti compacts prepared by slip casting. Materials Science & Engineering A 587 (2013) 123–131.

DOI: 10.1016/j.msea.2013.08.051

Google Scholar

[15] H.D. Jung, S.W. Yook, T.S. Jang, Y. Li, H.E. Kim, Y.H. Koh, Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering C 33 (2013) 59–63.

DOI: 10.1016/j.msec.2012.08.004

Google Scholar

[16] S.W. Yook, H.D. Jung, C.H. Park, K.H. Shin, Y.H. Koh, Y. Estrin, H.E. Kim, Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomaterialia 8 (2012) 2401–2410.

DOI: 10.1016/j.actbio.2012.03.020

Google Scholar

[17] L.J. Chen, T. Li, Y.M. Li, H. He, Y.H. Hu, Porous titanium implants fabricated by metal injection molding. Transactions of Nonferrous Metallurgical Society China 19 (2009) 1174 – 1179.

DOI: 10.1016/s1003-6326(08)60424-0

Google Scholar

[18] Y. Torres, J.J. Pavón , I. Nieto, J.A. Rodríguez, Conventional Powder Metallurgy Process and Characterization of Porous Titanium for Biomedical Applications. Metallurgical and Materials Transactions B 42 (2011) 891 – 900.

DOI: 10.1007/s11663-011-9521-6

Google Scholar

[19] I.H. Oh, H. Segawa, N. Nomura, S. Hanada, Microstructures and Mechanical Properties of Porosity-Graded Pure Titanium Compacts. Materials Transactions 44 (2003) 657 – 660.

DOI: 10.2320/matertrans.44.657

Google Scholar

[20] B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh, S.H. Oh, H.S. Kim, C.S. Lee, Space-holder effect on designing pore structure and determining mechanical properties in porous titanium. Materials and Design 57 (2014) 712–718.

DOI: 10.1016/j.matdes.2013.12.078

Google Scholar

[21] A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, A.V. Hamza, Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia 55 (2007) 1343–1349.

DOI: 10.1016/j.actamat.2006.09.038

Google Scholar

[22] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 26 (2005) 5474−5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[23] J. Minister, Modeling of viscoelastic deformation of cortical bone tissue. Acta of Bioengineering and Biomechanics 5 (2003) 11 – 21.

Google Scholar