[1]
A. Barbas, A.S. Bonnet, P. Lipinski, R. Pesci, G. Dubois, Development and mechanical characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Medical Materials 9 (2012) 34 – 44.
DOI: 10.1016/j.jmbbm.2012.01.008
Google Scholar
[2]
Z. Esen, E.T. Bor, S. Bor, Characterization of loose powder sintered porous titanium and Ti6Al4V alloy. Turkish Journal of Engineering Environmental Science 33 (2009) 207 – 219.
Google Scholar
[3]
I. Watanabe, M. McBride, P. Newton, K.S. Kurtz, Laser surface treatment to improve mechanical properties of cast titanium. Dental Materials 25 (2009) 629–633.
DOI: 10.1016/j.dental.2008.11.006
Google Scholar
[4]
J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials 3 (2010) 249 – 259.
DOI: 10.1016/j.jmbbm.2009.10.006
Google Scholar
[5]
X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R. B Wicker, Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials 16 (2012).
DOI: 10.1016/j.jmbbm.2012.10.005
Google Scholar
[6]
M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti 29Nb 13Ta–4. 6Zr. Biomaterials 24 (2003) 2673–2683.
DOI: 10.1016/s0142-9612(03)00069-3
Google Scholar
[7]
T.,J. Webster, C. Ergun, R.H. Doremus, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21 (17) (2000) 1803–1810.
DOI: 10.1016/s0142-9612(00)00075-2
Google Scholar
[8]
F. Rupp, L. Scheideler, D. Rehbein, D. Axmann, Geis-Gerstorfer, Journal of Biomaterials 25 (2004) 1429–1438.
DOI: 10.1016/j.biomaterials.2003.08.015
Google Scholar
[9]
S. Bauer, P. Schmuki, K. Mark, J. Park, Engineering biocompatible implant surfaces Part I: Materials and surfaces. Progress in Materials Science 58 (2013) 261–326.
DOI: 10.1016/j.pmatsci.2012.09.001
Google Scholar
[10]
T. Traini, C. Mangano, R.L. Sammons, F. Mangano, A. Macchi, A. Piattelli, Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials 24 (2008).
DOI: 10.1016/j.dental.2008.03.029
Google Scholar
[11]
J. Gallo, J. Losták, K. Langová, Long-term survival of the uncemented Balgrist cup. International Orthopaedics, 37(8): 1449-1456, (2013).
DOI: 10.1007/s00264-013-1946-x
Google Scholar
[12]
J. Gallo, S.B. Goodman, Y. Konttinen, M. Wimmer, M. Holinka, Osteolysis around total knee arthroplasty. A review of pathogenetic mechanisms. Acta Biomaterialia 9 (2013) 8046-8058.
DOI: 10.1016/j.actbio.2013.05.005
Google Scholar
[13]
C. Nich, Y. Takakubo, J. Pajarinen, M. Ainola, A. Salem, T. Sillat, A. Rao, M. Raška, Y. Tamaki, M. Takagi, Y. Konttinen, S.B. Goodman, J. Gallo, Macrophages – Key cells in the response to wear debris from joint replacements. Journal of Biomedical Materials Research. Part A, 101 (2013).
DOI: 10.1002/jbm.a.34599
Google Scholar
[14]
Q. Xu, B. Gabbitas, S. Matthews, Influence of porosity on mechanical behaviour and gas permeability of Ti compacts prepared by slip casting. Materials Science & Engineering A 587 (2013) 123–131.
DOI: 10.1016/j.msea.2013.08.051
Google Scholar
[15]
H.D. Jung, S.W. Yook, T.S. Jang, Y. Li, H.E. Kim, Y.H. Koh, Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering C 33 (2013) 59–63.
DOI: 10.1016/j.msec.2012.08.004
Google Scholar
[16]
S.W. Yook, H.D. Jung, C.H. Park, K.H. Shin, Y.H. Koh, Y. Estrin, H.E. Kim, Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomaterialia 8 (2012) 2401–2410.
DOI: 10.1016/j.actbio.2012.03.020
Google Scholar
[17]
L.J. Chen, T. Li, Y.M. Li, H. He, Y.H. Hu, Porous titanium implants fabricated by metal injection molding. Transactions of Nonferrous Metallurgical Society China 19 (2009) 1174 – 1179.
DOI: 10.1016/s1003-6326(08)60424-0
Google Scholar
[18]
Y. Torres, J.J. Pavón , I. Nieto, J.A. Rodríguez, Conventional Powder Metallurgy Process and Characterization of Porous Titanium for Biomedical Applications. Metallurgical and Materials Transactions B 42 (2011) 891 – 900.
DOI: 10.1007/s11663-011-9521-6
Google Scholar
[19]
I.H. Oh, H. Segawa, N. Nomura, S. Hanada, Microstructures and Mechanical Properties of Porosity-Graded Pure Titanium Compacts. Materials Transactions 44 (2003) 657 – 660.
DOI: 10.2320/matertrans.44.657
Google Scholar
[20]
B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh, S.H. Oh, H.S. Kim, C.S. Lee, Space-holder effect on designing pore structure and determining mechanical properties in porous titanium. Materials and Design 57 (2014) 712–718.
DOI: 10.1016/j.matdes.2013.12.078
Google Scholar
[21]
A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, A.V. Hamza, Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia 55 (2007) 1343–1349.
DOI: 10.1016/j.actamat.2006.09.038
Google Scholar
[22]
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 26 (2005) 5474−5491.
DOI: 10.1016/j.biomaterials.2005.02.002
Google Scholar
[23]
J. Minister, Modeling of viscoelastic deformation of cortical bone tissue. Acta of Bioengineering and Biomechanics 5 (2003) 11 – 21.
Google Scholar