PIC/MCC Simulations for the Oxygen Microwave Breakdown at Atmospheric Conditions

Article Preview

Abstract:

In this paper, the code of Particle-In-Cell/Monte Carlo Collision (PIC/MCC) for oxygen microwave breakdown is developed. This code is based on the three dimensional particle-in-cell platform CHIPIC, and with a module for increasing the charge of each super-particle. With this PIC/MCC code, the multiplication rate of the electron density and the delay time in oxygen breakdown at atmospheric conditions are researched. The results show: the multiplication rate of the electron density is periodic, and its period is the half of the electric field period; the breakdown delay time in the gas breakdown increases while the frequency of electric field or the gas pressure increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

859-862

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. M. Yang, C. W. Yuan, and B. L. Qian, Physics of Plasmas, 19 122101 (2012).

Google Scholar

[2] H. C. Kwon, I. H. Won, and J. K. Lee, Applied Physics Letters, 100 183702 (2012).

Google Scholar

[3] F. Iza, J. K. Lee, and M. G. Kong, Phys. Rev. Lett., 99 075004 (2007).

Google Scholar

[4] G. J. Kim, W. Kim, K. T. Kim, and J. K. Lee, Appl. Phys. Lett., 96 021502 (2010).

Google Scholar

[5] P. C. Zhao, C. Liao, D. Yang, X. M. Zhong, and W. B. Lin, Acta Phys. Sin., 62 055101 (2013).

Google Scholar

[6] H. H. Wang, L. Meng, D. G. Liu, and L. Q., Physics Letters A 378 810 (2014).

Google Scholar

[7] C. Yang, D. G. Liu, X. M. Wang, L. Q. Liu, X. Q. Wang, and S. G. Liu, Acta Phys. Sin., 61 045204, (2012).

Google Scholar

[8] H. H. Wang, D. G. Liu, L. Meng, L. Q. Liu, C. Yang, K. Peng, and M. Z. Xia, Acta Phys. Sin., 62 015207 (2013).

Google Scholar

[9] H. H. Wang, C. Yang, D. G. Liu, L. Meng, L. Q. Liu, and M. Z. Xia, Acta Phys. Sin., 62 015206, (2013).

Google Scholar

[10] S. K. Nam, and J. P. Verboncoeur, Applied Physics Letter, 93 151504 (2008).

Google Scholar

[11] G. Z. Liu, J. Y. Liu, W. H. Huang, J. S. Zhou, X. X. Song, and H. Ning, Chinese Physics B, 9 757 (2000).

Google Scholar

[12] J. Zhou, D. Liu, C. Liao, and Z. Li, IEEE Trans. Plasma Sci., 37 2002 (2009).

Google Scholar

[13] H. H. Wang, L. Meng, D. G. Liu, and L. Q. Liu, Phys. Plasmas, 20, 122102 (2013).

Google Scholar

[14] Y. Itikawa, J. Phys. Chem. Ref. Data, 38 1 (2009).

Google Scholar

[15] V. Vahedi, M. Surendra, Computer Physics Communications, 87 179 (1995).

Google Scholar

[16] L. Gould, L. W. Roberts, Journal of Applied Physics, 27 1162 (1956).

Google Scholar

[17] J. T. Krile, A. A. Neuber, H. G. Krompholz, and T. L. Gibson, Applied Physics Letters, 89 201501 (2006).

Google Scholar