Fast Solidification and Electrical Conductivity of Apatite-Type Nanoceramics

Article Preview

Abstract:

Apatite oxides electrolytes La9.33(SiO4)6O2 was prepared following the Sol-Gel aqueous route. The structure of La9.33(SiO4)6O2 was evaluated using the X-ray diffraction patterns (PXRD). The main phase is La9.33Si6O26 with the Minor impurity phase of La2SiO5 as a secondary phase. And dense La9.33(SiO4)6O2 nanoceramics with grain size of smaller than 100 nm were fabricated by high-pressure sintering, the pressure of 4.5 GPa, the sintering temperature of 1200 oC and dwelling time of 10 min were used. The ionic conductivity of the samples is evaluated by AC impedance spectroscopy. The conductivity of dense La9.33(SiO4)6O2 nanoceramics by high-pressure densification is one multiple higher compared with that of the microcrystalline ceramics. The activation energy in the samples by high-pressure densification and conventional sintering method was 1.06 eV and 1.44 eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

909-913

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nakayama, T. Kageyama, H. Aono, Y. Sadaoka, J. Mater. Chem. 5 (1995) p.1801.

Google Scholar

[2] S. Nakayama, M. Sakamoto, J. Eur. Ceram. Soc. 18 (1998) 1413.

Google Scholar

[3] M. S. Islam, J. R. Tolchard, P. R. Slater, Chem. Commun. 13 (2003) 1486.

Google Scholar

[4] K. Higashi, K. Sonoda, H . Ono, S. Sameshima, Y. Hirata, J. Mater. Res. 14 (1999) 957.

Google Scholar

[5] S. Celerier, C. Laberty-Robert, F. Ansart, C. Calmet, P. Stevens, J. Eur. Ceram. Soc. 25 (2005) 2665.

Google Scholar

[6] Y. Masubuchi, M. Higuchi, T. Takeda, S. Kikkawa, J. Alloys Compd. 408–412 (2006) 641.

Google Scholar

[7] E. J. Abram, D.C. Sinclair, A. R. West, J. Mater. Chem. 11 (2001) (1978).

Google Scholar

[8] J. E. H. Sansom, D. Riching, P.R. Slater, Solid State Ionics 139 (2001) 205.

Google Scholar

[9] P.J. Panteix, I. Julien, D. Bernache-Assollant, P. Abélard, Mater. Chem. Phys. 95 (2006) 313.

Google Scholar

[10] U. Anselmi-Tamburini, J. E. Garay, Z. A. Munir, A. Tacca, F. Maglia, G. Chiodelli, G. Spinolo, J. Mater. Res. 19 (2004) 3263.

DOI: 10.1557/jmr.2004.0424

Google Scholar

[11] U. Anselmi-Tamburini, F. Maglia, G. Chiodelli, A. Tacca, G. Spinolo, P. Riello, S. Bucella, Z. A. Munir, Adv. Funct. Mater. 16 (2006) 2363.

DOI: 10.1002/adfm.200500415

Google Scholar

[12] D. Johnson, Zview Program, Version 2. 4a, Scribner Associates, Inc., 1990–(2001).

Google Scholar

[13] Q. Li, T. Xia, X. D. Liu, X. F. Ma, J. Meng, X. Q. Cao, Mater. Sci. Eng. B 138 (2007) 78.

Google Scholar