Modeling the Correlation between Microstructure and Tensile Properties of Ti-17 Alloy Using Artificial Neural Network

Article Preview

Abstract:

In this work, a relational model was established correlating microstructure and tensile properties for the Ti-17 alloy using a back-propagation (BP) neural network technique. In the proposed model, the input data consisted of quantitative microstructural feature parameters, including the volume fraction, thickness and Ferret ratio of α phase. Meanwhile, the tensile properties are the outputs of the model, such as ultimate tensile strength, yield strength, elongation and reduction in area. The coefficient of determination is more than 0.900, which indicates that the developed model possesses the excellent ability to predict the internal relationship of the microstructure and tensile properties of Ti-17 alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-130

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev and S.L. Semiatin: Acta Mater Vol. 57 (2009), p.2470.

DOI: 10.1016/j.actamat.2009.02.016

Google Scholar

[2] R.R. Boyer, G.W. Kuhlman: Metall. Mater. Trans. A Vol. 18 (1983), p. (2095).

Google Scholar

[3] G. Lütjering: Mater. Sci. Eng. A Vol. 243 (1998), p.32.

Google Scholar

[4] D.E. Rumelhart, G. Hinfon, R. Williams: Nature Vol. 323 (1986), p.533.

Google Scholar

[5] Y. Sun, W.D. Zeng, Y.F. Han, X. Ma, Y.Q. Zhao: Comput. Mater. Sci. Vol. 50 (2011), p.1064.

Google Scholar

[6] Y.C. Zhu, W.D. Zeng, Y. Sun, F. Feng, Y.G. Zhou: Comput. Mater. Sci. Vol. 50 (2011), p.1785.

Google Scholar

[7] K.X. Wang, W.D. Zeng, Y.Q. Zhao, Y.T. Shao, Y.G. Zhou: Mater. Sci. Eng., A Vol. 527 (2010), p.6193.

Google Scholar

[8] S. Fréour, D. Gloaguen, M. François, R. Guillén: Scr. Mater. Vol. 54 (2006), p.1475.

Google Scholar

[9] K.X. Wang, W.D. Zeng, Y.T. Shao, Y.Q. Zhao, Y.G. Zhou: Rare Metal Mater. Eng. Vol. 3 (2009), p.398.

Google Scholar

[10] K. Swingler: Applying Neural Networks: A Practical Guide (Morgan Kaufman Publishers, Inc., America 1996).

Google Scholar