A Novel Approach for Determining Critical Fracture Strain of a near Alpha Titanium Alloy during Hot Compression Deformation

Abstract:

Article Preview

A novel high-speed photography is introduced to determine the critical fracture strain of a near alpha titanium ally during hot compression deformation. This method precisely captures the nucleation site and propagation process of cracking, and thus is an excellent method to represent dynamically the hot-deformation fracture. Compared with the traditional way, it can significantly decrease the number of trials and improve the accuracy. Based on this method, the critical fracture strain is measured, and a critical fracture model is developed.

Info:

Periodical:

Edited by:

Taufiq Yap Yun Hin

Pages:

166-170

DOI:

10.4028/www.scientific.net/AMR.983.166

Citation:

W. W. Peng et al., "A Novel Approach for Determining Critical Fracture Strain of a near Alpha Titanium Alloy during Hot Compression Deformation", Advanced Materials Research, Vol. 983, pp. 166-170, 2014

Online since:

June 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] A.R. Rosenfield: Int. Mater. Rev. Vol. 13 (1968), pp.29-40.

[2] A.M. Freudenthal: The Inelastic Behavior of Solids, Wiley, New York (1950).

[3] M.G. Cockroft and D.J. Latham: J. Inst. Met. Vol. 96 (1968), pp.33-39.

[4] S.I. Oh, C.C. Chen and S. Kobayashi: J. Eng. Ind. Trans. ASME Vol. 101 (1976), pp.36-44.

[5] M. Oyane, T. Sato, K. Okimoto and S. Shima: J. Mech. Work. Technol. Vol. 4 (1980), pp.65-81.

[6] W.D. Zeng, Y. Shu, X.M. Zhang, et al.: Mater. Sci. Technol. Vol. 24 (2008), pp.1222-1229.

[7] P. Fang, L.F. Cheng, L.T. Zhang, et al.: Nondestr. Test. Vol. 28 (2006), pp.358-361.

[8] Y.F. Dong, Y.M. Lin, L.G. Wang, et al.: J. Liaoning Tech. Univ. Vol. 25 (2006), pp.848-850.

[9] Y.C. Zhu, W.D. Zeng, F.S. Zhang, Y.Q. Zhao, X.M. Zhang and K.X. Wang: Mater. Sci. Eng. A Vol. 553 (2012), pp.112-118.

[10] S. Jin, T.G. Tang, Q.Z. Li, et al.: Chinese J. High Press. Phys. Vol. 20 (2006), pp.434-438.

[11] C.E. Rousseau and H.V. Tippur: Mech. Mater. Vol. 33 (2001), pp.403-421.

[12] S.X. Song, X.L. Wang and T.G. Nieh: Scripta Mater. Vol. 62 (2010), pp.847-850.

[13] J. Pujana, P.J. Arrazola and J.A. Villar: J. Mater. Process. Technol. Vol. 202 (2008), pp.475-485.

[14] R.R. Boyer: Mater. Sci. Eng. A Vol. 213 (1996), pp.103-114.

[15] S.V.S. Narayana Murty, B. Nageswara Rao and B.P. Kashyap: J. Mater. Process. Technol. Vol. 147 (2004), pp.94-101.

[16] W.W. Peng, W.D. Zeng, Q. J Wang and H.Q. Yu: Mater. Sci. Eng. A Vol. 571 (2013), pp.116-122.

[17] J. Unnam, R.N. Shenoy and R.K. Clark: Oxid. Met. Vol. 26 (1986), pp.231-252.

[18] S. Alexandrov, P.T. Wang and R.E. Roadman: J. Mater. Process. Technol. Vol. 160 (2005), pp.257-265.

[19] W.J. Kim, H.K. Kim, W.Y. Kim and S.W. Han: Mater. Sci. Eng. A Vol. 488 (2008), pp.468-474.

In order to see related information, you need to Login.