A Novel Approach for Determining Critical Fracture Strain of a near Alpha Titanium Alloy during Hot Compression Deformation

Article Preview

Abstract:

A novel high-speed photography is introduced to determine the critical fracture strain of a near alpha titanium ally during hot compression deformation. This method precisely captures the nucleation site and propagation process of cracking, and thus is an excellent method to represent dynamically the hot-deformation fracture. Compared with the traditional way, it can significantly decrease the number of trials and improve the accuracy. Based on this method, the critical fracture strain is measured, and a critical fracture model is developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-170

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R. Rosenfield: Int. Mater. Rev. Vol. 13 (1968), pp.29-40.

Google Scholar

[2] A.M. Freudenthal: The Inelastic Behavior of Solids, Wiley, New York (1950).

Google Scholar

[3] M.G. Cockroft and D.J. Latham: J. Inst. Met. Vol. 96 (1968), pp.33-39.

Google Scholar

[4] S.I. Oh, C.C. Chen and S. Kobayashi: J. Eng. Ind. Trans. ASME Vol. 101 (1976), pp.36-44.

Google Scholar

[5] M. Oyane, T. Sato, K. Okimoto and S. Shima: J. Mech. Work. Technol. Vol. 4 (1980), pp.65-81.

Google Scholar

[6] W.D. Zeng, Y. Shu, X.M. Zhang, et al.: Mater. Sci. Technol. Vol. 24 (2008), pp.1222-1229.

Google Scholar

[7] P. Fang, L.F. Cheng, L.T. Zhang, et al.: Nondestr. Test. Vol. 28 (2006), pp.358-361.

Google Scholar

[8] Y.F. Dong, Y.M. Lin, L.G. Wang, et al.: J. Liaoning Tech. Univ. Vol. 25 (2006), pp.848-850.

Google Scholar

[9] Y.C. Zhu, W.D. Zeng, F.S. Zhang, Y.Q. Zhao, X.M. Zhang and K.X. Wang: Mater. Sci. Eng. A Vol. 553 (2012), pp.112-118.

Google Scholar

[10] S. Jin, T.G. Tang, Q.Z. Li, et al.: Chinese J. High Press. Phys. Vol. 20 (2006), pp.434-438.

Google Scholar

[11] C.E. Rousseau and H.V. Tippur: Mech. Mater. Vol. 33 (2001), pp.403-421.

Google Scholar

[12] S.X. Song, X.L. Wang and T.G. Nieh: Scripta Mater. Vol. 62 (2010), pp.847-850.

Google Scholar

[13] J. Pujana, P.J. Arrazola and J.A. Villar: J. Mater. Process. Technol. Vol. 202 (2008), pp.475-485.

Google Scholar

[14] R.R. Boyer: Mater. Sci. Eng. A Vol. 213 (1996), pp.103-114.

Google Scholar

[15] S.V.S. Narayana Murty, B. Nageswara Rao and B.P. Kashyap: J. Mater. Process. Technol. Vol. 147 (2004), pp.94-101.

Google Scholar

[16] W.W. Peng, W.D. Zeng, Q. J Wang and H.Q. Yu: Mater. Sci. Eng. A Vol. 571 (2013), pp.116-122.

Google Scholar

[17] J. Unnam, R.N. Shenoy and R.K. Clark: Oxid. Met. Vol. 26 (1986), pp.231-252.

Google Scholar

[18] S. Alexandrov, P.T. Wang and R.E. Roadman: J. Mater. Process. Technol. Vol. 160 (2005), pp.257-265.

Google Scholar

[19] W.J. Kim, H.K. Kim, W.Y. Kim and S.W. Han: Mater. Sci. Eng. A Vol. 488 (2008), pp.468-474.

Google Scholar