[1]
R.L. Powel, CFC Phase out: have we met the challenge, J. Fluorine Chem. 114 (2002) 237-250.
DOI: 10.1016/s0022-1139(02)00030-1
Google Scholar
[2]
M. Mohanraj, S. Jayaraj and C. Muraleedharan, Environment friendly alternatives to halogenated refrigerants– A review, Int. J. Greenhouse Gas Control, 3 (2009) 108-119.
DOI: 10.1016/j.ijggc.2008.07.003
Google Scholar
[3]
M. Mohanraj, C. Muraleedharan and S. Jayaraj, A review on recent developments in new refrigerant mixtures for vapour compression based refrigeration, air conditioning and heat pump units, Int. J. Energy Res. 35 (2011) 647-669.
DOI: 10.1002/er.1736
Google Scholar
[4]
Z. Yang and X. Wu, Retrofits and options for the alternatives to HCFC22, Energy, 59 (2013) 1-21.
Google Scholar
[5]
W. Chen, A comparative study on the performance and environmental characteristics of R410A and R22 residential air conditioners, Appl. Therm. Eng. 28 (2008) 1-7.
DOI: 10.1016/j.applthermaleng.2007.07.018
Google Scholar
[6]
JM. Calm and PA. Domanski, R22 replacement status, ASHRAE J. 46(8) (2004) 29-39.
Google Scholar
[7]
C. Aprea and A. Greco, An exergetic analysis of R22 substitution, Appl. Therm. Eng. 22 (2002) 1455-1469.
DOI: 10.1016/s1359-4311(02)00066-2
Google Scholar
[8]
CAI. Ferreira, H. Vanderree and S. Touber, The role of compressors in industrial refrigeration plants an exergy analysis, Proc. Int. Congr. Refrig, Sydney, Australia, 578 (1999) 2843-2851.
Google Scholar
[9]
A. Sencan, R. Selbas, O. Kizilkan, A. Soteris and A. Kalogirou, Thermodynamic analysis of subcooling and superheating effect of alternative refrigerants for vapour compression refrigeration cycles, Int. J. Energy Res. 30 (2006) 323-347.
DOI: 10.1002/er.1151
Google Scholar
[10]
C. Aprea, F. de Rossi, A. Greco and C. Renno, Refrigeration plant exergetic analysis varying the compressor capacity, Int. J. Energy Res. 27 (2003) 653-669.
DOI: 10.1002/er.903
Google Scholar
[11]
C. Aprea and C. Renno, Experimental comparision of R22 with R417A performance in a vapour compression refrigeration plant subject to a cold store, Energy Convers. Manage. 45 (2004) 1807-1819.
DOI: 10.1016/j.enconman.2003.10.001
Google Scholar
[12]
A. Arora, BB. Arora, BD. Pathak and HL. Sachdev, Exergy analysis of vapour compression refrigeration system with HCFC22, R407C and R410A, Int. J. Exergy. 4(4) (2007) 441-454.
DOI: 10.1504/ijex.2007.015083
Google Scholar
[13]
A. Arora and HL. Sachdev, Thermodynamic analysis of R422 series refrigerants as alternative refrigerants to HCFC 22 in a vapour compression refrigeration system, Int. J. Energy Res. 33 (2009) 753-765.
DOI: 10.1002/er.1508
Google Scholar
[14]
A. Arora and SC. Kaushik, Theoretical analysis of vapour compression system with R502, R404A and R507A, Int. J. Refrig. 31 (2008) 998-1005.
DOI: 10.1016/j.ijrefrig.2007.12.015
Google Scholar
[15]
J. P. Holman, Experimental methods for engineers, New Delhi, Tata McGraw hill Publishing Company. (2007).
Google Scholar
[16]
M. Mohanraj, S. Jayaraj and C. Muraleedharan, Exergy assesment of a direct expansion solar assisted heat pump working with R22 and R407C/LPG mixture, Int. J. Green Energy. 7 (2010) 65-83.
DOI: 10.1080/15435070903501274
Google Scholar
[17]
C. Aprea, R. Mastrullo and C. Renno, An analysis of the performance of vapor compression plant working both as water chiller and heat pump using R22 and R417A, Appl. Therm. Eng. 24 (2004) 487-499.
DOI: 10.1016/j.applthermaleng.2003.10.006
Google Scholar
[18]
C. Aprea, A. Maiorino and R. Mastrullo, Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapour compression refrigeration plant for a walk in cooler, Appl. Energy, 88 (2001) 4742-4748.
DOI: 10.1016/j.apenergy.2011.06.049
Google Scholar