Design of MICS Band Low Power Transmitter for Implantable Medical Applications

Article Preview

Abstract:

The cyborg can control robotic arm by means of the brain implant. The design of implantable node is critical because the surgically implanted node should consume very low power. In this paper, an efficient CMOS Transmitter in terms of low power is presented for Implantable Medical Devices in the MICS band. The RF front-end transmitter consists of up-conversion mixer and a power amplifier. The designs have been done using Cadence RF Spectre tools with 180 nm technology and the transmitter front-end consumes 900μW for the MICS band.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

1223-1228

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Lo, S. Thiemjarus, R. King et al., Body Sensor Network -A Wireless Sensor Platform for Pervasive Healthcare Monitoring, Proceeding of International Conference on Pervasive Computing, (2005).

Google Scholar

[2] MedRadio approval, FCC, Washington, DC, Rep. FCC 09-23-A1, March (2009).

Google Scholar

[3] MICS band plan, FCC, Washington, DC, Part 95, FCC rules and regulations, Jan (2003).

Google Scholar

[4] B. Razavi. RF Microelectronics. Prentice-Hall, Upper Saddle River, New Jersey, second Ed., (1998).

Google Scholar

[5] Joonsung Bae, Namjun Cho, and Hoi-Jun Yoo, A 490µW Fully MICS Compatible FSK Transceiver for Implantable devices, in IEEE symposium on VLSI Circuits Digest of Technical Papers (2009).

DOI: 10.1109/isscc.2009.4977489

Google Scholar

[6] Hyouk-Kyu Cha, M. Kumarasamy Raja, Xiaojun Yuan, and Minkyu Je, A CMOS MedRadio Receiver RF Front-End with Complementary Current-Reuse LNA and Mixer for Biomedical Applications, in IEEE Asian Solid State Circuit Conference A-SSCC, (2011)1-4.

DOI: 10.1109/asscc.2010.5716555

Google Scholar

[7] Ghulam Mehdi, Naveed Ahsan, Amjad Altaf1, Amir Eghbali, A 403-MHz Fully Differential Class-E Amplifier in 0. 35 μm CMOS for ISM Band Applications IEEE East-West Design Test Symposium (2008 )239-242.

Google Scholar

[8] Wen—Shan Hxiao, Zhi-Ming Lin, A 1. 1v 11. 6dBm IIP3 up-conversion mixer for UWB Wireless system, IEEE International Midwest Symposium on Circuits and systems, (2009)1042 - 1046.

DOI: 10.1109/mwscas.2009.5235980

Google Scholar

[9] S.A. Z Murad, M. Mohamad Shahimin, R. K Pokharel, H. Kanaya and K. Yoshida, Fully integrated CMOS up-conversion mixer with input active balun for wireless applications, IEEE Regional symposium on Micro and Nanoelectronics RSM(2011) 112 - 116.

DOI: 10.1109/rsm.2011.6088304

Google Scholar

[10] S.A. Z Murad, R. K Pokharel, M.A. Abdelghany, H. Kanaya ,K. Yoshida and S.A. Z Murad, High linearity 5. 2GHz CMOS up-conversion mixer using Derivative superposition method, TENCON (2010) 1509 - 1512.

DOI: 10.1109/tencon.2010.5686143

Google Scholar

[11] Wu Chenjian, Li Zhiqun, A 0. 18µm CMOS up-conversion mixer for Wireless Sensor Network applications, International Conference on Wireless Communication and Signal Processing(WCSP), (2011)1-4.

DOI: 10.1109/wcsp.2011.6096764

Google Scholar

[12] Le Viet Hoang, Nguyen Trung Kien, Sok-Kyun Han, Sang-Gug Lee, Hyun, S. B, Low power High linearity Transmitter Front-end for 900MHz Zigbee applications, IEEE International Conference on Circuits and Systems, ISCAS (2006) 43-46.

DOI: 10.1109/iscas.2006.1692912

Google Scholar

[13] Trung-Kien Nguyen, Nam-Jin Oh, Seok-Kyun Han, Sang-Gug Lee, A Low Power CMOS RF Transmitter Front-end for 2. 4GHz Zigbee applications, (2006).

DOI: 10.1109/rws.2006.1615090

Google Scholar

[14] Jiangmin Gu, Wei Meng Lim, Kiat-Seng Yeo, Manh Anh Do, and Chirn Chye Boon, Low power Transmitter Design for BAN, Biomedical circuits and Systems Conference, (2007) 175 – 178.

DOI: 10.1109/socdc.2009.5423796

Google Scholar