[1]
N. G. Hingorani, L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, NewYork, (2000).
Google Scholar
[2]
E. Acha, V.G. Agelidis, O. Anaya and T.J. Miller, Power Electronic Control in Electrical System, Newness power engineering series. First published (2002).
DOI: 10.1016/b978-075065126-4/50002-x
Google Scholar
[3]
C. A. Canizares, Modeling and Implementation of TCR and VSI Based FACTS Controllers, Internal report, ENEL and Politecnico di Milano, Milan, Italy (Oct. 1999).
Google Scholar
[4]
H. Mori, and Y. Goto, A parallel tabu search based method for determining optimal allocation of FACTS in power systems, Proc. Of the International Conference on Power System Technology (PowerCon 2000), vol. 2, 2000, pp.1077-1082.
DOI: 10.1109/icpst.2000.897170
Google Scholar
[5]
S. Gerbex, R. Cherkaoui, and A.J. Germond, 'Optimal location of multitype FACTS devices in a power system by means of genetic algorithms, ', IEEE Trans. on Power Systems, vol. 16, no. 3, pp.537-544, Aug. (2001).
DOI: 10.1109/59.932292
Google Scholar
[6]
S. Najafi, S.H. Hosseinian, M . Abedi, Optimal Placement of STATCOM Using Genetic algorithm , journal of Amirkabir, (2006).
Google Scholar
[7]
W. Ongsakul, and P. Jirapong, Optimal allocation of FACTS devices to enhance total transfer capability using evolutionary programming, Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS 2005), vol. 5, 2005, pp.4175-4178.
DOI: 10.1109/iscas.2005.1465551
Google Scholar
[8]
J. Kennedy, R. Eberhart, Particle swarm optimization" Proceedings of IEEE International Conference on Neural Networks (lCNN, 95), vol. IV, pp.1942-1948, Perth. Australia. (1995).
Google Scholar
[9]
H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Trans, Power Systems, vol. 15(4). pp.1232-1239, Nov (2000).
DOI: 10.1109/59.898095
Google Scholar
[10]
M. Clerc, J. Kennedy, The particle swarm explosion, stability and convergence in a multidimensional complex space, IEEE Trans., Evolutionary Computation, vol. 6(1), pp.58-73, Feb (2002).
DOI: 10.1109/4235.985692
Google Scholar
[11]
Y. del Valle, J. C. Hernandez, G. K. Venayagamoorthy, R. G. Harley, Multiple STATCOM Allocation and Sizing Using Particle Swarm Optimization, 2006 power system conference and exposition (PSCE 2006), (2006).
DOI: 10.1109/psce.2006.296200
Google Scholar
[12]
R. Seydel, Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, Second Edition, Springer-Verlag, New York, (1994).
Google Scholar
[13]
A.C. Z. Souza, C.A. Canizares, and V. H. Quintana, New Technique to Speed Up Voltage Collapse Computations Using Tangent Vector, IEEE Transactions on Power systems, vol. 12, no. 3, pp.1380-1387, Aug. (1997).
DOI: 10.1109/59.630485
Google Scholar
[14]
C.A. Canizares and F.L. Alvarado, Point of Collapse and Continuation Methods for Large AC/DC Systems, IEEE Transactions on Power Systems, vol. 8, no. 1, p.1{8, Feb. (1993).
DOI: 10.1109/59.221241
Google Scholar
[15]
R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), vol. 1, p.84–88, (2000).
DOI: 10.1109/cec.2000.870279
Google Scholar
[16]
B. Zhao, C.X. Guo, Y.J. Cao, A multiagent-based particle swarm optimization approach for optimal reactive power dispatch, IEEE Trans, Power system, vol. 20(2), pp.1070-1078, May (2005).
DOI: 10.1109/tpwrs.2005.846064
Google Scholar