[1]
D.B. Miracle, Compos. Sci. Technol. 65 (2005) 2526–2540.
Google Scholar
[2]
ASM Handbook on Powder Metal Technologies and Applications, ASM International, USA, (1984).
Google Scholar
[3]
ASM Metals Handbook on Forming, ASM International, USA, (1984).
Google Scholar
[4]
Sridhar I, Fleck NA. Yield behavior of cold compacted composite powders. Acta Mater 2000;48:3341–52.
DOI: 10.1016/s1359-6454(00)00151-8
Google Scholar
[5]
[4] Lu YX, Meng XM, Lee CS, Li RKY, Huang CG, Lai JKL. Microstructure and mechanical behavior of a SiC particles reinforced aluminum composite under dynamic loading. J Mater Process Technol 1999;94:175–8.
DOI: 10.1016/s0924-0136(99)00091-6
Google Scholar
[6]
Darrien K, Baptiste D, Guedra-degeorges D, Foalquter J. Multiscale modeling of the damaged plastic behavior and failure of Al/SiCp composites. Int J Plastic 1999;15:667–85.
DOI: 10.1016/s0749-6419(99)00009-1
Google Scholar
[7]
Cadek J, Zhu SJ, Milic'ka K. Creep behaviour of ods-aluminium reinforced by silicon carbide particulates: ods Al– 30 SiCp composite. Mater Sci Eng A 1998;248:65–72.
DOI: 10.1016/s0921-5093(98)00518-8
Google Scholar
[8]
Pan YB, Qlu JH, Morita M. Oxidization and micro hardness of SiC–AlN composite at high temperature. Mater Res Bull 1998;33(1):133–9.
Google Scholar
[9]
Li Y, Mohamed FA. An investigation of creep behavior in a SiC–2124 Al composite. Acta Mater 1997;45(11):4775–85.
DOI: 10.1016/s1359-6454(97)00130-4
Google Scholar
[10]
Geiger AL, Hasselman DPH, Weich P. Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperatures. Acta Mater 1997; 45(9):3911–4.
DOI: 10.1016/s1359-6454(97)00041-4
Google Scholar
[11]
Sivakumar K, Balakrishna Bhatt T, Ramakrishnan P. Dynamic consolidation of aluminium and Al-20 vol SiCp composite powders. J Mater Process Technol 1996;62:191–8.
DOI: 10.1016/0924-0136(95)02231-7
Google Scholar
[12]
Liaw PK, Shannon RE, Clark Jt WG, Harrigan Jt WC, Jeong'p H, Hsu DK, et al. Non-destructive characterization of material matrix composites properties of metal, South Korea. Mater Chem Phys 1995;39:220–8.
DOI: 10.1016/0254-0584(94)01431-f
Google Scholar
[13]
Varma Vijay K, Kumar SV, Mahajan YR, Kutumbara VV. Cyclic stress response of Al–Cu–Mg alloy matrix composites with SiCp of varying sizes. Scripta Mater 1998;38(10):1571.
DOI: 10.1016/s1359-6462(98)00065-7
Google Scholar
[14]
Huang ZW, Mccoll IR, Harris SJ. Mater Sci Eng A 1996;215:67–72.
Google Scholar
[15]
Szczepanik S, Lohnert W. The formability of the Al–5% SiC composite obtained using P/M method. J Mater Process Technol 1996;60:03–709.
Google Scholar
[16]
Abdel-Rahman M, El-Sheikh MN. Workability in forging of powder metallurgy compacts. J Mater Process Technol 1995;54:97–102.
DOI: 10.1016/0924-0136(95)01926-x
Google Scholar
[17]
Narayanasamy R, Ponalagusamy R, Subramanian KR. Generalized yield criteria of porous sintered powder metallurgy metals. J Mater Process Technol 2001;110:182–5.
DOI: 10.1016/s0924-0136(00)00884-0
Google Scholar
[18]
Narayanasamy R, Ramesh T, Pandey KS. An investigation on instantaneous strain hardening behavior in three dimensions of aluminum–iron composites during cold upsetting. Mater Sci Eng A 2005;394:149–60.
DOI: 10.1016/j.msea.2004.11.016
Google Scholar
[19]
Narayanasamy R, Ramesh T, Pandey KS. Workability studies on cold upsetting of Al–Al2 O3 composite material. J Mater Des 2006;27:566–75.
DOI: 10.1016/j.matdes.2004.12.005
Google Scholar
[20]
Narayanasamy R, Ramesh T, Pandey KS. Some aspects on workability of aluminum–iron powder metallurgy composite during cold upsetting. Mater Sci Eng A 2005;391:418–26.
DOI: 10.1016/j.msea.2004.09.018
Google Scholar
[21]
Selvakumar N, Narayanasamy R. Deformation behavior of cold upset forming of sintered Al–Fe composite performs. J Eng Mater Technol 2005;127:251–6.
DOI: 10.1115/1.1867984
Google Scholar
[22]
Narayanasamy R, Senthilkumar V, Pandey KS. Some aspects on hot forging features of P/M sintered iron performs under various stress state condition. Mech Mater 2006;38:367–86.
DOI: 10.1016/j.mechmat.2005.11.005
Google Scholar
[23]
Narayanasamy R, Senthilkumar V, Pandey KS. Some aspects of workability studies on P/M sintered high strength 4% titanium carbide composite steel performs during cold upsetting. J Mater Des 2006;3:39–57.
DOI: 10.1007/s10999-006-9012-0
Google Scholar
[24]
Narayanasamy R, Ananthakrishnan V, Pandey KS. Effect of carbon content on workability of powder metallurgy steels. Mater Sci Eng A 2008;494:337–42.
DOI: 10.1016/j.msea.2008.04.022
Google Scholar
[25]
Narayanasamy R, Senthilkumar V, Pandey KS. Some aspects of workability studies on hot forging of sintered high strength 4% Titanium Carbide composite steel performs. J Mater Sci EngA 2006;425:121–30.
DOI: 10.1016/j.msea.2006.03.035
Google Scholar
[26]
Narayanasamy R, Senthilkumar V, Pandey KS. Some aspects of workability studies on sintered high strength P/M Steel composite performs of varying TiC contents during hot forging. J Mater Sci Eng 2008;43:102–16.
DOI: 10.1007/s10853-007-2124-6
Google Scholar
[27]
Narayanasamy R, Senthilkumar V, Pandey KS. Some aspects on hot forging features of P/M sintered high-strength titanium carbide composite Steel performs under different stress state conditions. J Eng Mater Technol 2007;129:113–29.
DOI: 10.1115/1.2400261
Google Scholar
[28]
Dieter GE. Mechanical metallurgy. New York: McGraw-Hill; (1988).
Google Scholar
[29]
Narayanasamy R, Ramesh T, Pandey KS. An investigation on instantaneous strain hardening behavior in three dimensions of aluminum–iron composites during cold upsetting. J Mater Sci Eng A 2005;394:149–60.
DOI: 10.1016/j.msea.2004.11.016
Google Scholar
[30]
Narayanasamy R, Pandey KS. Phenomenon of barreling in aluminum solid cylinders during cold upset – forging. J Mater Process Technol 1997;70:17–21.
DOI: 10.1016/s0924-0136(97)00035-6
Google Scholar
[31]
Narayanasamy R, Ramesh T, Pandey KS. An experimental investigation on strain hardening behaviour of Aluminium–3.5% Alumina powder metallurgy composite perform under various stress states during cold upset forming. J Mater Des 2007;28:1211–23.
DOI: 10.1016/j.matdes.2006.01.010
Google Scholar
[32]
Narayanasamy R, Ananthakrishnan V, Pandey KS. Comparison of workability strain and stress parameters of powder metallurgy Steels AISI 9840 and AISI 9845 during cold upsetting. J Mater Des 2008;29:1919–25.
DOI: 10.1016/j.matdes.2008.04.023
Google Scholar
[33]
Narayanasamy R, Selvakumar N, Pandey KS. Phenomenon of instantaneous strain hardening behavior of sintered Al–Fe composite performs during cold axial forming. J Mater Des 2007;28:1358–63.
DOI: 10.1016/j.matdes.2006.01.020
Google Scholar
[34]
Narayanasamy R, Ramesh T, Pandey KS. Some aspects on strain hardening behavior in three dimensions of aluminum–iron powder metallurgy composite during cold upsetting. J Mater Des 2006;27:640–50.
DOI: 10.1016/j.matdes.2004.12.012
Google Scholar
[35]
Production and sintering practices in powder metal technologies and Applications. ASM Hand Book, vol. 07. ASM International; 2002. p.468–503.
Google Scholar
[36]
Narayanasamy R, Ramesh T, Pandey KS. Effect of particle size on new constitutive relationship of aluminum–iron powder metallurgy composite during cold upsetting. J Mater Des 2008;29:1011–26.
DOI: 10.1016/j.matdes.2006.06.004
Google Scholar
[37]
Vujovic V, Shabaik AH. A new workability criteria for ductile metals. J Eng Mater Technol 1986;108(3):245–9.
Google Scholar
[38]
Narayanasamy R, Ramesh T, Prabhakar M. Effect of particle size of SiC in aluminum matrix on workability and strain hardening behavior of P/M composite. J Mater Sci Eng A 2009;504:13–23.
DOI: 10.1016/j.msea.2008.11.037
Google Scholar