Performance of PVD Coated on High Speed Steel Cutting Tool in Industrial Applications

Article Preview

Abstract:

An experimental investigation of mechanical properties of TiN and AlCrN Coated cutting tools have been performed at room Temperature. HSS single point cutting tool is taken as substrate material. Aluminium chromium nitride (AlCrN) and Titanium Nitride (TiN) is applied by physical vapour deposition method. Vaporized and condensed form of the desired film material on to various work piece surface is generally known as Physical Vapor Deposition (PVD). The finished product’s surface finish is increased by the coated tool and hence it reduces the cost of quality control process in industry. In uncoated HSS tool, the tool frequently requires replacement or reconditioning, which is not required for TiN and AlCrN Coated cutting tool and hence it reduces the cost for replacements .In PVD coating, the tool life is increased about 7.5 times compared to the uncoated cutting tool. For the factor of cost analysis, the cost required for making an AlCrN coated cutting tool is drastically reduced and increased life of tool also reduces the cost to procure a new tool or replacing an old one.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

495-501

Citation:

Online since:

July 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Mo, M.H. Zhu, B. Lei, Y.X. Leng, N. Huang . Comparison of tribological behaviours of AICrN and TiAIN coatings-Deposited by Physical vapour deposition. Wear 263(2007)1423-1429.

DOI: 10.1016/j.wear.2007.01.051

Google Scholar

[2] Muammer Nalbant, Hasan Gokkaya, Ihsan Toktas, Gokhan sur. The experimental investigation of the effects of uncoated, PVD-and CVD –coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks. Robotics and computer-Integrated Manufacturing 25(2009).

DOI: 10.1016/j.rcim.2007.11.004

Google Scholar

[3] Shin Min Lee, Han Ming Chow, Fuang Yuan Huang, Biing Hwa Yan . Friction drilling of austenitic stainless steel by uncoated and PVD AICrN-and TiAIN-coated tungsten carbide tools. International journal of Machine tools &Manufacture49 (2009)81-88.

DOI: 10.1016/j.ijmachtools.2008.07.012

Google Scholar

[4] L.A. Dobrzanski, J. Mikula. The structure and functional properties of PVD and CVD coated AI2O3+ZrO2 oxide tool ceramics. Journal of Materials Processing Technology 167(2005)438-446.

DOI: 10.1016/j.jmatprotec.2005.05.034

Google Scholar

[5] Renato Francoso de Avila, Alexandre Mendes Abrao, G. Cristina Duraes de Godoy. The performance of TiN coated carbide tools when turning AISI 8620 steel. Journal of Materials Processing Technology 179(2006)161-164.

DOI: 10.1016/j.jmatprotec.2006.03.066

Google Scholar

[6] Janusz Richter, Micro-scale abrasion testing of PVD TiN coatings on conventional and nonledeburitic high-speed steels. Wear 257(2004) 304-310.

DOI: 10.1016/j.wear.2003.12.016

Google Scholar

[7] Miha Cekada, Peter Panjan, Darja Kek Merl, Marijan Macek. Mechanical Properties of CrN/Cr coatings with different thicknesses. Materiali in Tehnologije 37(2003)5, ISSN 1580-2949.

Google Scholar

[8] J.L. Mo, M.H. Zhu. Sliding tribological behaviour of AICrN coating. Tribology International 41(2008)1161-1168.

DOI: 10.1016/j.triboint.2008.02.007

Google Scholar

[9] J.L. Mo, M.H. Zhu . Sliding tribological behaviours of PVD CrN and AICrN coatings against Si3N4 ceramic and pure titanium . Wear 267(2009)874-881.

DOI: 10.1016/j.wear.2008.12.047

Google Scholar

[10] E.E. Vera,M. Vite,R. Lewis E.A. Gallardo J.R. Laguna-Camacho . A study of the wear performance of TiN, CrN and WC/C coatings on different steel substrates . wear 271(2011)2116-2124.

DOI: 10.1016/j.wear.2010.12.061

Google Scholar

[11] S. PalDey S.C. Deevi, single layer and multilayer wear resistant coatings of (Ti, AI) N: a review, Mater. Sci. Eng. A342 (2003)58-79.

DOI: 10.1016/s0921-5093(02)00259-9

Google Scholar

[12] W.D. Sproul, Physical vapor deposition tool coatings, Surf. Coat. Technol. 81 (1996) 1-7.

Google Scholar

[13] H.A. Jehn, Multicomponent and multiphase hard coatings for tribological applications, Surf. Coat. Technol. 131 (2000) 433-440.

DOI: 10.1016/s0257-8972(00)00783-0

Google Scholar

[14] A. Richter, Recipe for enhancement, Cutting tool Engg. 57 (2005) 10-12.

Google Scholar

[15] G.S. Fox-Robinovich, B.D. Beake, J.L. Endrino. et al. Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAIN and AICrN coatings, Surf. Coat. Technol. 200 (2006) 5738-5742.

DOI: 10.1016/j.surfcoat.2005.08.132

Google Scholar

[16] K. Singh P.K. Limaye N.L. Soni, Wear studies of (Ti-AI)N coatings deposited by reactive magnetron sputtering . Wear 258(2005)1813-1824.

DOI: 10.1016/j.wear.2004.12.023

Google Scholar

[17] R.J. Rodrigue, J.A. Garcia, A. Medrano, et al., Tribological behavior of hard coatings deposited by arc-evaporation PVD, Vacuum 67 (2002) 559-566.

DOI: 10.1016/s0042-207x(02)00248-8

Google Scholar

[18] J.G. Han, J.S. Yoon H.J. Kim,K. Song, High Temperature wear resistance of (Ti-AI)N films synthesized by cathodic arc plasma deposition , Surf. Coat. Technol. 86-87 (1996) 82-87.

DOI: 10.1016/s0257-8972(96)02964-7

Google Scholar

[19] H. Ohnuma, N. Nihira, A. Mitsuo, et al., Effect of Aluminium concentration on friction and wear properties of Titanium and Aluminium nitride films, Surf. Coat. Technol. 177-178(2004)623-626.

DOI: 10.1016/s0257-8972(03)00936-8

Google Scholar

[20] L.L. Kwang M.Y. Hwang, Ch.D. Wu, The deposition and wear properties of cathodic arc plasma deposition TiAIN deposits, Mater. Chem. Phys. 46 (1996)77-83.

DOI: 10.1016/0254-0584(96)80134-9

Google Scholar

[21] B.J. Kim S.H. Lee J.J. Lee, Adhesion, oxidation and wear properties of compositionally gradient (Ti1-xAIX)N coatings made by plasma enhanced chemical vapor deposition,J. Master. Sci. Lett. 16(1997)1597-1599.

Google Scholar

[22] S.Y. Yoon J.K. KimH.K. Kwang. A comparative study on tribological behavior of TiN and TiAIN coatings prepared by arc ion plating technique, Surf. Coat. Technol. 161 (2002)237-242.

DOI: 10.1016/s0257-8972(02)00474-7

Google Scholar

[23] M. Okumiya, M. Griepentrog, Mechanical properties and Tribological behavior of TiN-CrAIN and CrN-CrAIN multilayer coatings, Surf. Coat. Technol. 112 (1999)123-128.

DOI: 10.1016/s0257-8972(98)00799-3

Google Scholar

[24] E. Lugscheider,K. Bobzin,K. Lackner, Investigations of mechanical and tribological properties of CrAIN+C thin coatings deposited on cutting tools , Surf. Coat. Technol174-175(2003)681-686.

DOI: 10.1016/s0257-8972(03)00566-8

Google Scholar

[25] H. Willmann, P.H. Mayrhofer P.O.A. Persson, et al., Thermal stability of AI-Cr-N hard coatings, Scr. Mater. 54 (2006)1847-1851.

DOI: 10.1016/j.scriptamat.2006.02.023

Google Scholar

[26] J. Vetter, E. Lugscheider, S.S. Guerreiro, (Cr. AI)N coatings deposited by the cathodic vacuum arc evaporation , Surf. Coat. Technol. 98(1998)1233-1239.

DOI: 10.1016/s0257-8972(97)00238-7

Google Scholar

[27] H. Hasegawa.T. Suzuki, Effects of second metal contents on microstructure and micro- hardness of ternary nitride films synthesized by cathodic arc method. Surf. Coat. Technol. 188-189(2004)234-240.

DOI: 10.1016/j.surfcoat.2004.08.033

Google Scholar

[28] O. Banakh, P.E. Schmid, R. Sanjines, F. Levy, High-temperature oxidation resistance of Cr1-xAIXN thin films deposited by reactive magnetron sputtering, Surf. Coat. Technol. 163-164(2003)57-61.

DOI: 10.1016/s0257-8972(02)00589-3

Google Scholar

[29] A. Kimura .M. Kawate, H. Hasegawa, T. Suzuki, Anisotropic lattice expansion and shrinkage of hexagonal TiAIN and CrAIN films , Surf. Coat. Technol. 169-17-(2003)367-370.

DOI: 10.1016/s0257-8972(03)00040-9

Google Scholar

[30] A.E. Reitera .V.H. Derflingera, B. Hanselmanna, et al., Investigation of the properties of AI1-xCrxN coatings prepared by cathodic arc evaporation, Surf. Coat. Technol. 200 (2005)2114-2122.

DOI: 10.1016/j.surfcoat.2005.01.043

Google Scholar

[31] R. Wuhrer, W.Y. Yeung, A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium nitride and chromium aluminium nitride coatings, Scr. Mater . 50(2004)1461-1466.

DOI: 10.1016/j.scriptamat.2004.03.007

Google Scholar

[32] www. mfg. mtu. edu.

Google Scholar