Power Quality Improvement in Wind Energy Generation Using Fuzzy Logic Controller

Article Preview

Abstract:

Nowadays, renewable energies have been widely applied to achieve eco friendly objectives. This paper presents the development of a single-phase grid-connected wind energy generation with the improvement in power quality and efficiency. This mainly focuses on showing the improvement in power quality by overcoming the drawbacks with the existing wind energy generation based on the PLL with the discrete PI controller. It is found that Total Harmonic Distortions (THD) present in PLL Single-phase grid-connected wind energy generation can be reduced by using modified PLL method. The modified wind energy generation is based on PLL with Fuzzy logic controller instead of PLL with discrete PI controller. The PLL gets input from the load side, and compare with any one parameters current or voltage (closed loop system). The aim of this survey is to propose a new topology in (HCM) HILL CLIMB METHOD. The tasks related to the SVPWM algorithm, the PLL, the MPPT algorithm, and the monitoring of the DC voltage were successfully implemented in the DSC. Keywords – Total Harmonic Distortions, Phase Locked Loop, Discrete PI Controller, Fuzzy logic controller, Space Vector Pulse Width Modulation, Maximum Power Point Tracking, Digital Signal Controller.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

730-739

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] American Wind Energy Association—AWEA, Annual Wind Energy Industry Report. A WEA Doc. Feb. 2009 [Online]. Available: http: /www. awea. org/publications/reports/AWEA-Annual-Wind-Report-2009. pdf.

DOI: 10.1016/s1755-0084(09)70138-3

Google Scholar

[2] P. Mukund, Wind power, in Wind, Solar Power Systems Design, Analysis and Operation, 2nd ed. Boca Raton, FL: Taylor & Francis, (2006).

Google Scholar

[3] M. Liserre, T. Sauter, and J. Y. Hung, Future energy systems, IEEE Ind. Electron. Mag., vol. 4, p.18–37, Mar. (2010).

Google Scholar

[4] L. A. C. Lopes, J. Lhuilier, A. Mukherjee, and M. F. Khokhar, A wind turbine emulator that represents the dynamics of the wind turbine rotor and drive train, in Proc. Power Electronics Specialists Conf., Jan. 2006, p. (2092).

DOI: 10.1109/pesc.2005.1581921

Google Scholar

[5] C. Saudemont, G. Cimuca, B. Robyns, and M. M. Radulescu, Grid connected or stand-alone real-time variable speed wind generator emulator associated to a flywheel energy storage system, in Proc. Eur. Conf. Power Electronics and Applications (EPE 2005), Aug. 2006, pp. P. 1–P. 10.

DOI: 10.1109/epe.2005.219472

Google Scholar

[6] R.G. delValle,M. Cotorogea,B. Rabelo, andW. Hofmann, On the emulation of an isolated wind energy conversion system: Experimental results, in Proc. Electronics, Robotics and Automotive Mechanics Conf. (CERMA 2009), Sep. 2009, p.462–467.

DOI: 10.1109/cerma.2009.72

Google Scholar

[7] F. A. Ramírez, M. A. Arjona, and C. Hernandez, Emulation of a single phase dsPIC based grid-connected wind energy conversion system, in Proc. Int. Conf. Electrical Machines (ICEM 2010), Sep. 2010, p.1.

DOI: 10.1109/icelmach.2010.5607968

Google Scholar

[8] S. Zhang, K. J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X. Y. Wang, Design of a robust grid interface system for PMSG-based wind turbine generators, IEEE Trans. Ind. Electron., vol. 58, no. 1, p.316–328, Jan. (2011).

DOI: 10.1109/tie.2010.2044737

Google Scholar

[9] G. Abad, M. A. Rodriguez, G. Iwanski, and J. Poza, Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage, IEEE Trans. Power Electron., vol. 25, no. 1, p.442, Feb. (2010).

DOI: 10.1109/tpel.2009.2027438

Google Scholar

[10] V. Jalili-Marandi, L. F. Pak, and V. Dinavahi, Real-time simulation of grid-connected wind farms using physical aggregation, IEEE Trans. Ind. Electron., vol. 57, no. 9, p.3010–3021, Sep. (2010).

DOI: 10.1109/tie.2009.2037644

Google Scholar

[11] Z. Chen, J. M. Guerrero, and F. Blaabjerg, A Review of the state of the art of power electronics for wind turbines, IEEE Trans. Power Electron., vol. 24, no. 8, p.1859–1875, Aug. (2009).

DOI: 10.1109/tpel.2009.2017082

Google Scholar

[12] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. Portillo Guisado, M. Á. Martín Prats, J. I. León, and N. Moreno Alfonso, Power-electronic systems for the grid integration of renewable energy sources: A survey, IEEE Trans. Ind. Electron., vol. 53, no. 4, p.1002–1016, Feb. (2006).

DOI: 10.1109/tie.2006.878356

Google Scholar

[13] N. Kodama, T. Matsuzaka, and N. Inomata, Power variation control of a wind turbine generator using probabilistic optimal control, including feedforward control from wind speed, Wind Eng., vol. 24, no. 1, p.13–23, Jan. (2000).

DOI: 10.1260/0309524001495378

Google Scholar

[14] M. Karimi-Ghartemani and M. R. Iravani, A method for synchronization of power electronic converters in polluted and variable-frequency environments, IEEE Trans. Power Syst., vol. 19, no. 3, p.1263–1270, Aug. (2004).

DOI: 10.1109/tpwrs.2004.831280

Google Scholar

[15] F. Liccardo, P. Marino, and G. Raimondo, Robust and fast three-phase PLL tracking system, IEEE Trans. Ind. Electron., vol. 58, no. 1, p.221–231, Jan. (2011).

DOI: 10.1109/tie.2010.2044735

Google Scholar

[16] S. Shinnaka, A robust single-phase PLL system with stable and fast tracking, IEEE Trans. Ind. Appl., vol. 44, no. 2, p.624–633, Mar. (2008).

DOI: 10.1109/tia.2008.916750

Google Scholar

[17] G. C. Hsieh and J. C. Hung, Phase-locked loop techniques-a survey, IEEE Trans. Ind. Electron., vol. 43, p.609–615, Dec. (1996).

DOI: 10.1109/41.544547

Google Scholar

[18] S. A. Oliveira da Silva, R. Novochadlo, and R. A. Modesto, Singlephase PLL structure using modified p-q theory for utility connected systems, in Proc. Power Electronics Specialists Conf. (PESC 2008), Jun. 2008, p.4706.

DOI: 10.1109/pesc.2008.4592712

Google Scholar

[19] B. K. Bose, Modern Power Electronics and AC Drives, 1sted. Englewood Cliffs, NJ: Prentice Hall, (2002).

Google Scholar

[20] H. Pinheiro, F. Botteron, C. Rech, L. Schuch, R. F. Camargo, H. L. Hey, H. A. Grundling, J. R. Pinheiro, and J. R. , Space vector modulation for voltage-source inverters: A unified approach, in Proc. Ind. Electron. Soci. IEEE200228thAnn. Conf., p.23.

DOI: 10.1109/iecon.2002.1187476

Google Scholar

[21] B. Vafakhah, J. Salmon, and A. M. Knight, A new space-vector PWM with optimal switching selection for multilevel coupled inductor inverters, IEEE Trans. Ind. Electron., vol. 57, no. 7, p.2354–2364, Jul. (2010).

DOI: 10.1109/tie.2009.2038939

Google Scholar

[22] R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A. F. Souza, Comparison of three PLL algorithms for UPS applications, IEEE Trans. Ind. Electron., vol. 55, no. 8, p.2923–2932, Aug. (2008).

DOI: 10.1109/tie.2008.924205

Google Scholar