[1]
American Wind Energy Association—AWEA, Annual Wind Energy Industry Report. A WEA Doc. Feb. 2009 [Online]. Available: http: /www. awea. org/publications/reports/AWEA-Annual-Wind-Report-2009. pdf.
DOI: 10.1016/s1755-0084(09)70138-3
Google Scholar
[2]
P. Mukund, Wind power, in Wind, Solar Power Systems Design, Analysis and Operation, 2nd ed. Boca Raton, FL: Taylor & Francis, (2006).
Google Scholar
[3]
M. Liserre, T. Sauter, and J. Y. Hung, Future energy systems, IEEE Ind. Electron. Mag., vol. 4, p.18–37, Mar. (2010).
Google Scholar
[4]
L. A. C. Lopes, J. Lhuilier, A. Mukherjee, and M. F. Khokhar, A wind turbine emulator that represents the dynamics of the wind turbine rotor and drive train, in Proc. Power Electronics Specialists Conf., Jan. 2006, p. (2092).
DOI: 10.1109/pesc.2005.1581921
Google Scholar
[5]
C. Saudemont, G. Cimuca, B. Robyns, and M. M. Radulescu, Grid connected or stand-alone real-time variable speed wind generator emulator associated to a flywheel energy storage system, in Proc. Eur. Conf. Power Electronics and Applications (EPE 2005), Aug. 2006, pp. P. 1–P. 10.
DOI: 10.1109/epe.2005.219472
Google Scholar
[6]
R.G. delValle,M. Cotorogea,B. Rabelo, andW. Hofmann, On the emulation of an isolated wind energy conversion system: Experimental results, in Proc. Electronics, Robotics and Automotive Mechanics Conf. (CERMA 2009), Sep. 2009, p.462–467.
DOI: 10.1109/cerma.2009.72
Google Scholar
[7]
F. A. Ramírez, M. A. Arjona, and C. Hernandez, Emulation of a single phase dsPIC based grid-connected wind energy conversion system, in Proc. Int. Conf. Electrical Machines (ICEM 2010), Sep. 2010, p.1.
DOI: 10.1109/icelmach.2010.5607968
Google Scholar
[8]
S. Zhang, K. J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X. Y. Wang, Design of a robust grid interface system for PMSG-based wind turbine generators, IEEE Trans. Ind. Electron., vol. 58, no. 1, p.316–328, Jan. (2011).
DOI: 10.1109/tie.2010.2044737
Google Scholar
[9]
G. Abad, M. A. Rodriguez, G. Iwanski, and J. Poza, Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage, IEEE Trans. Power Electron., vol. 25, no. 1, p.442, Feb. (2010).
DOI: 10.1109/tpel.2009.2027438
Google Scholar
[10]
V. Jalili-Marandi, L. F. Pak, and V. Dinavahi, Real-time simulation of grid-connected wind farms using physical aggregation, IEEE Trans. Ind. Electron., vol. 57, no. 9, p.3010–3021, Sep. (2010).
DOI: 10.1109/tie.2009.2037644
Google Scholar
[11]
Z. Chen, J. M. Guerrero, and F. Blaabjerg, A Review of the state of the art of power electronics for wind turbines, IEEE Trans. Power Electron., vol. 24, no. 8, p.1859–1875, Aug. (2009).
DOI: 10.1109/tpel.2009.2017082
Google Scholar
[12]
J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. Portillo Guisado, M. Á. Martín Prats, J. I. León, and N. Moreno Alfonso, Power-electronic systems for the grid integration of renewable energy sources: A survey, IEEE Trans. Ind. Electron., vol. 53, no. 4, p.1002–1016, Feb. (2006).
DOI: 10.1109/tie.2006.878356
Google Scholar
[13]
N. Kodama, T. Matsuzaka, and N. Inomata, Power variation control of a wind turbine generator using probabilistic optimal control, including feedforward control from wind speed, Wind Eng., vol. 24, no. 1, p.13–23, Jan. (2000).
DOI: 10.1260/0309524001495378
Google Scholar
[14]
M. Karimi-Ghartemani and M. R. Iravani, A method for synchronization of power electronic converters in polluted and variable-frequency environments, IEEE Trans. Power Syst., vol. 19, no. 3, p.1263–1270, Aug. (2004).
DOI: 10.1109/tpwrs.2004.831280
Google Scholar
[15]
F. Liccardo, P. Marino, and G. Raimondo, Robust and fast three-phase PLL tracking system, IEEE Trans. Ind. Electron., vol. 58, no. 1, p.221–231, Jan. (2011).
DOI: 10.1109/tie.2010.2044735
Google Scholar
[16]
S. Shinnaka, A robust single-phase PLL system with stable and fast tracking, IEEE Trans. Ind. Appl., vol. 44, no. 2, p.624–633, Mar. (2008).
DOI: 10.1109/tia.2008.916750
Google Scholar
[17]
G. C. Hsieh and J. C. Hung, Phase-locked loop techniques-a survey, IEEE Trans. Ind. Electron., vol. 43, p.609–615, Dec. (1996).
DOI: 10.1109/41.544547
Google Scholar
[18]
S. A. Oliveira da Silva, R. Novochadlo, and R. A. Modesto, Singlephase PLL structure using modified p-q theory for utility connected systems, in Proc. Power Electronics Specialists Conf. (PESC 2008), Jun. 2008, p.4706.
DOI: 10.1109/pesc.2008.4592712
Google Scholar
[19]
B. K. Bose, Modern Power Electronics and AC Drives, 1sted. Englewood Cliffs, NJ: Prentice Hall, (2002).
Google Scholar
[20]
H. Pinheiro, F. Botteron, C. Rech, L. Schuch, R. F. Camargo, H. L. Hey, H. A. Grundling, J. R. Pinheiro, and J. R. , Space vector modulation for voltage-source inverters: A unified approach, in Proc. Ind. Electron. Soci. IEEE200228thAnn. Conf., p.23.
DOI: 10.1109/iecon.2002.1187476
Google Scholar
[21]
B. Vafakhah, J. Salmon, and A. M. Knight, A new space-vector PWM with optimal switching selection for multilevel coupled inductor inverters, IEEE Trans. Ind. Electron., vol. 57, no. 7, p.2354–2364, Jul. (2010).
DOI: 10.1109/tie.2009.2038939
Google Scholar
[22]
R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A. F. Souza, Comparison of three PLL algorithms for UPS applications, IEEE Trans. Ind. Electron., vol. 55, no. 8, p.2923–2932, Aug. (2008).
DOI: 10.1109/tie.2008.924205
Google Scholar