[1]
S. E. B. Elghali, R. Balme, K. L. Saux, M. E. H. Benbouzid, J. F. Charpentier, and F. Hauville, A simulation model for the evaluation of the electrical power potential harnessed by amarine current turbine, IEEE J. Oceanic Eng., vol. 32, no. 4, p.786–797, Oct. (2007).
DOI: 10.1109/joe.2007.906381
Google Scholar
[2]
W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, Hydrodynamics of marine current turbines, Renewable Energy, vol. 31, no. 2, p.249–256, Feb. (2006).
DOI: 10.1016/j.renene.2005.08.020
Google Scholar
[3]
L. Wang, T. -H. Yeh,W. -J. Lee, and Z. Chen, Analysis of a commercial wind farm in Taiwan, Part I: Measurement results and simulations, IEEE Trans. Ind. Appl., vol. 47, no. 2, p.939–953, Mar. /Apr. (2011).
DOI: 10.1109/tia.2010.2101991
Google Scholar
[4]
L. Wang, T. -H. Yeh,W. -J. Lee, and Z. Chen, Analysis of a commercial wind farm in Taiwan, Part II: Different current-limit reactors and load tap changers on system performance, IEEE Trans. Ind. Appl., vol. 47, no. 2, p.954–964, Mar. /Apr. (2011).
DOI: 10.1109/tia.2010.2091373
Google Scholar
[5]
L. Wang and Z. -J. Chen, Stability analysis of a wave-energy conversion system containing a grid-connected induction generator driven by a wells turbine, IEEE Trans. Energy Conv., vol. 25, no. 2, p.555–563, Jun. (2010).
DOI: 10.1109/tec.2009.2036837
Google Scholar
[6]
L. Gyugyi, Unified power flow control concept for flexible AC transmission systems, IET Proc., C, vol. 139, no. 4, p.323–331, Jul. (1992).
DOI: 10.1049/ip-c.1992.0048
Google Scholar
[7]
I. Papic, P. Zunko, D. Povh, and M. Weinhold, Basic control of the unified power flow controller, IEEE Trans. Power Syst., vol. 12, no. 4, p.1734–1739, Nov. (1997).
DOI: 10.1109/59.627884
Google Scholar
[8]
C. D. Schauder, L. Gyugyi,M. R. Lund, D.M. Hamai, T. R. Rietman, D. R. Torgerson, and A. Edris, Operation of the unified power flow controller (UPFC) under practical constraints, IEEE Trans. Power Del., vol. 13, no. 2, p.630–639, Apr. (1998).
DOI: 10.1109/61.660949
Google Scholar
[9]
H. F. Wang, Damping function of unified power flow controller, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 146, no. 1, p.81–87, Jan. (1999).
DOI: 10.1049/ip-gtd:19990064
Google Scholar
[10]
A. J. F. Keri, A. S. Mehraban, X. Lombard, A. Elriachy, and A. A. Adris, Unified power flow controller (UPFC): Modeling and analysis, IEEE Trans. Power Del., vol. 14, no. 2, p.648–659, Apr. (1999).
DOI: 10.1109/61.754113
Google Scholar
[11]
Z. Huang, Y. Ni, C. M. Shen, F. F. Wu, S. Chen, and B. Zhang, Application of unified power flow controller in interconnected power systems, IEEE Trans. Power Syst., vol. 15, no. 2, p.817–824, May (2000).
DOI: 10.1109/59.867179
Google Scholar
[12]
H. Chen, Y. Wang, and R. Zhou, Transient and voltage stability enhancement via coordinated excitation and UPFC control, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 148, no. 3, p.201–208, May (2001).
DOI: 10.1049/ip-gtd:20010189
Google Scholar
[13]
C. -T. Chang and Y. -Y. Hsu, Design of UPFC controllers and supplementary damping controller for power transmission control and stability enhancement of a longitudinal power system, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 149, no. 4, p.463–471, Jul. (2002).
DOI: 10.1049/ip-gtd:20020199
Google Scholar
[14]
P. Garcia-Gonzalez and A. Garcia-Cerrada, Detailed analysis and experimental results of the control system of a UPFC, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 150, no. 2, p.147–154, Mar. (2003).
DOI: 10.1049/ip-gtd:20030026
Google Scholar
[15]
S. Kannan, S. Jayaram, and M. M. A. Salama, Real and reactive power coordination for a unified power flow controller, IEEE Trans. Power Syst., vol. 19, no. 3, p.1454–1463, Aug. (2004).
DOI: 10.1109/tpwrs.2004.831690
Google Scholar
[16]
E. Gholipour and S. Saadate, Improving of transient stability of power systems using UPFC, IEEE Trans. Power Del., vol. 20, no. 2, p.1677–1682, Apr. (2005).
DOI: 10.1109/tpwrd.2005.846354
Google Scholar
[17]
F. Sada, Aggregate model of large wind parks for power system studies, " master, s thesis, Sch. Electr. Eng., Kungliga Tekniska Högskolan, Stockholm, Sweden, (2011).
Google Scholar
[18]
Modeling new forms of generation and storage, CIGRE, TF. 01. 10, Fifth Draft, (2000).
Google Scholar
[19]
P. C. Krause, Analysis of Electric Machinery. New York: McGraw-Hill, (1987).
Google Scholar