Integrated Offshore Wind and Seashore Wave Farm Fed to a Power Grid Using a UPFC

Article Preview

Abstract:

This project presents the analyzed results of an integrated offshore wind and seashore wave farm fed to an onshore power grid through a unified power flow controller (UPFC) to simultaneously achieve power-fluctuation mitigation and stability improvement. A damping controller of the proposed UPFC is designed by using modal control theory to render adequate damping characteristics to the studied system. A frequency-domain scheme based on a linear system and a time-domain scheme based on a nonlinear system. From time domain analysis, the UPFC is designed. The proposed UPFC joined with the designed damping controller can effectively stabilize the studied integrated OWF and SWF under various interruption conditions. The fluctuated power injected in to the power grid can also be effectively mitigated by the proposed control scheme.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

740-743

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. E. B. Elghali, R. Balme, K. L. Saux, M. E. H. Benbouzid, J. F. Charpentier, and F. Hauville, A simulation model for the evaluation of the electrical power potential harnessed by amarine current turbine, IEEE J. Oceanic Eng., vol. 32, no. 4, p.786–797, Oct. (2007).

DOI: 10.1109/joe.2007.906381

Google Scholar

[2] W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, Hydrodynamics of marine current turbines, Renewable Energy, vol. 31, no. 2, p.249–256, Feb. (2006).

DOI: 10.1016/j.renene.2005.08.020

Google Scholar

[3] L. Wang, T. -H. Yeh,W. -J. Lee, and Z. Chen, Analysis of a commercial wind farm in Taiwan, Part I: Measurement results and simulations, IEEE Trans. Ind. Appl., vol. 47, no. 2, p.939–953, Mar. /Apr. (2011).

DOI: 10.1109/tia.2010.2101991

Google Scholar

[4] L. Wang, T. -H. Yeh,W. -J. Lee, and Z. Chen, Analysis of a commercial wind farm in Taiwan, Part II: Different current-limit reactors and load tap changers on system performance, IEEE Trans. Ind. Appl., vol. 47, no. 2, p.954–964, Mar. /Apr. (2011).

DOI: 10.1109/tia.2010.2091373

Google Scholar

[5] L. Wang and Z. -J. Chen, Stability analysis of a wave-energy conversion system containing a grid-connected induction generator driven by a wells turbine, IEEE Trans. Energy Conv., vol. 25, no. 2, p.555–563, Jun. (2010).

DOI: 10.1109/tec.2009.2036837

Google Scholar

[6] L. Gyugyi, Unified power flow control concept for flexible AC transmission systems, IET Proc., C, vol. 139, no. 4, p.323–331, Jul. (1992).

DOI: 10.1049/ip-c.1992.0048

Google Scholar

[7] I. Papic, P. Zunko, D. Povh, and M. Weinhold, Basic control of the unified power flow controller, IEEE Trans. Power Syst., vol. 12, no. 4, p.1734–1739, Nov. (1997).

DOI: 10.1109/59.627884

Google Scholar

[8] C. D. Schauder, L. Gyugyi,M. R. Lund, D.M. Hamai, T. R. Rietman, D. R. Torgerson, and A. Edris, Operation of the unified power flow controller (UPFC) under practical constraints, IEEE Trans. Power Del., vol. 13, no. 2, p.630–639, Apr. (1998).

DOI: 10.1109/61.660949

Google Scholar

[9] H. F. Wang, Damping function of unified power flow controller, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 146, no. 1, p.81–87, Jan. (1999).

DOI: 10.1049/ip-gtd:19990064

Google Scholar

[10] A. J. F. Keri, A. S. Mehraban, X. Lombard, A. Elriachy, and A. A. Adris, Unified power flow controller (UPFC): Modeling and analysis, IEEE Trans. Power Del., vol. 14, no. 2, p.648–659, Apr. (1999).

DOI: 10.1109/61.754113

Google Scholar

[11] Z. Huang, Y. Ni, C. M. Shen, F. F. Wu, S. Chen, and B. Zhang, Application of unified power flow controller in interconnected power systems, IEEE Trans. Power Syst., vol. 15, no. 2, p.817–824, May (2000).

DOI: 10.1109/59.867179

Google Scholar

[12] H. Chen, Y. Wang, and R. Zhou, Transient and voltage stability enhancement via coordinated excitation and UPFC control, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 148, no. 3, p.201–208, May (2001).

DOI: 10.1049/ip-gtd:20010189

Google Scholar

[13] C. -T. Chang and Y. -Y. Hsu, Design of UPFC controllers and supplementary damping controller for power transmission control and stability enhancement of a longitudinal power system, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 149, no. 4, p.463–471, Jul. (2002).

DOI: 10.1049/ip-gtd:20020199

Google Scholar

[14] P. Garcia-Gonzalez and A. Garcia-Cerrada, Detailed analysis and experimental results of the control system of a UPFC, Proc. Inst. Electr. Eng. —Gen., Transm., Distrib., vol. 150, no. 2, p.147–154, Mar. (2003).

DOI: 10.1049/ip-gtd:20030026

Google Scholar

[15] S. Kannan, S. Jayaram, and M. M. A. Salama, Real and reactive power coordination for a unified power flow controller, IEEE Trans. Power Syst., vol. 19, no. 3, p.1454–1463, Aug. (2004).

DOI: 10.1109/tpwrs.2004.831690

Google Scholar

[16] E. Gholipour and S. Saadate, Improving of transient stability of power systems using UPFC, IEEE Trans. Power Del., vol. 20, no. 2, p.1677–1682, Apr. (2005).

DOI: 10.1109/tpwrd.2005.846354

Google Scholar

[17] F. Sada, Aggregate model of large wind parks for power system studies, " master, s thesis, Sch. Electr. Eng., Kungliga Tekniska Högskolan, Stockholm, Sweden, (2011).

Google Scholar

[18] Modeling new forms of generation and storage, CIGRE, TF. 01. 10, Fifth Draft, (2000).

Google Scholar

[19] P. C. Krause, Analysis of Electric Machinery. New York: McGraw-Hill, (1987).

Google Scholar