[1]
D.P. Stojanovi´c et al. 2008. Dynamic load modelling based on measurements in medium voltage distribution network. Electric Power Systems Research. 78: 228–238.
DOI: 10.1016/j.epsr.2007.02.003
Google Scholar
[2]
Zwe-Lee Gaing. 2004. Wavelet-based neural network for power disturbance recognition and classification. IEEE Transactions on Power Delivery, 19(4): 1560-1568.
DOI: 10.1109/tpwrd.2004.835281
Google Scholar
[3]
Zhang Xiaoli, Zeng Xiangjun, Lei Li, Choi S S, Wang Yuanyuan. 2007. Fault location using wavelet energy spectrum analysis of traveling waves . Power Engineering Conference, IPEC 2007, pp: 1126-1130.
Google Scholar
[4]
Weon-Ki Yoon, Devaney M J. 1998. Power measurement using the wavelet transform. IEEE Transactions on Instrumentation and Measurement, 47(5): 1205-1210.
DOI: 10.1109/19.746584
Google Scholar
[5]
Tongxin Zheng, Makram E B, Girgis A A. 1999. Power system transient and harmonic studies using wavelet transform. IEEE Transactions on Power Delivery, 14(4): 1461-1468.
DOI: 10.1109/61.796241
Google Scholar
[6]
Solanki, M, Song Y.H. 2003. Transient protection of EHV transmission line using discrete wavelet analysis. IEEE Power Engineering Society General Meeting, (3): 79-84.
DOI: 10.1109/pes.2003.1267445
Google Scholar
[7]
Solanki M, Song Y H, Potts S , Perks A. 2001. Transient protection of transmission line using wavelet transform. Developments in Power System Protection, 2001, Seventh International Conference on (IEE), pp: 299-302.
DOI: 10.1049/cp:20010159
Google Scholar
[8]
Jiang F, Bo Z Q, Chin P S M, Redfern M A, Chen Z. 2000. Power transformer protection based on transient detection using discrete wavelet transform (DWT). Power Engineering Society Winter Meeting, IEEE, 3: 1856-1861.
DOI: 10.1109/pesw.2000.847635
Google Scholar
[9]
Jondral F. 1985. Automatic Classification of High Frequency Signals . Signal Processing, 9(3) : 177-190.
DOI: 10.1016/0165-1684(85)90144-6
Google Scholar
[10]
Karimi M, Mokhtari H, Iravani M R. 2000. Wavelet based on-line disturbance detection for power quality applications. IEEE Transactions on Power Delivery, 15(4): 1212-1220.
DOI: 10.1109/61.891505
Google Scholar
[11]
Kitayama Masashi, Nakabayashi Miyuki. 2001. A Fast Discrimination Method of Inrush Current Based on Transformer Magnetizing Characteristics. IEEE Transactions on Power Delivery, 121-B(8) : 982-989.
DOI: 10.1541/ieejpes1990.121.8_982
Google Scholar
[12]
M A Gnatenko, A V Shupletsov, G S Zinoviev, H Weiis. 2004. Measurement System For Quality Factors and Quantities of Electric Energy with Possible Wavelet Technique Utilization . Proceedings of 8th Russian-Korean International Symposium on Science and Technology, (4) : 325-358.
DOI: 10.1109/korus.2004.1555363
Google Scholar
[13]
Mallat S. 1989. A theory for multiresolution signal decomposition the wavelet representation. IEEE Trans on Pattem Analysis and Machine Intelligence, 11(7): 674—693. 69. Mallat S, Huang W L. 1992. Singularity detection and processing with wavelets[J]. IEEE Trans on Information Theory, 38(2): 617—640.
DOI: 10.1109/34.192463
Google Scholar
[14]
Nandi A K, Azzouz E E. 1998. Algorithms for Automatic Modulation Recognition of Communication Signals . IEEE Transactions on Communications, 46(4) : 431-436.
DOI: 10.1109/26.664294
Google Scholar
[15]
Pham V L, Wong K P. 1999. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms. IEE Proceedings Generation, Transmission and Distribution, 146(3): 249-254.
DOI: 10.1049/ip-gtd:19990316
Google Scholar