Effect of Different Radios of Two Complexes on the Structural and Optical Properties of ZnS Thin Films

Article Preview

Abstract:

ZnS thin films were deposited at three different radios of V(NH3·H2O)/V(N2H4) on glass substrates by chemical bath deposition (CBD) method without stirring the deposition bath during the deposition process. The structural and optical properties were analyzed by X-ray diffraction (XRD) and UV-VIS spectrophotometer. The results showed that ZnS thin film deposited at the radio of V(NH3·H2O)/V(N2H4)=15:15 is higher than that of the other two different solutions. With the radio of V(NH3·H2O)/V(N2H4) decreasing from 15:5 to 15:15, homogenous precipitation of Zn (OH)2 easily forms in the bath, but ZnS precipitation first become suppressed and then easily forms in solution. It means that the concentration of OH- ion increases with the volume of N2H4 increasing, which accelerates the formation of Zn (OH)2. However, when the volume of N2H4 increases to 15mL, relatively high concentration of OH- ion not only accelerates the formation of Zn (OH)2, but also be used to the hydrolysis of thiourea. The average transmissions of all the ZnS films from three different solutions (V(NH3·H2O)/V(N2H4)=15:5, 15:10 and 15:15) are greater than 90% for wavelength values in visible region. The direct band gaps range from 3.80 to 4.0eV. The ZnS film deposited for 2.5h with the radio of V(NH3·H2O)/V(N2H4)=15:15 has the cubic structure only after single deposition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 986-987)

Pages:

47-50

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. A. Ruffner, M. D. Himel, V. Mizrahi, G. I. Stegeman, U. Gibson. J. Appl. Opt. Vol. 28, (1989), 5209.

Google Scholar

[2] Y. Z. Zhao, S. C. Eou, J. K. Sang. Materials Chemistry and Physics. Vol. 135(2012), 287.

Google Scholar

[3] S. M. Salim, A. H. Eid, A. M. Salem and H. M. Abou El-khair. Surf. Interface Anal. Vol. 44( 2012), 1214.

Google Scholar

[4] J. M. Dona, J. Herrero. Thin Solid Films. Vol. 5(1995), 268.

Google Scholar

[5] T. Nakada, M. Mizutani, Y. Hagiwara, A. Kunioka. Solar Energy Materials & Solar Cells. Vol. 67(2001), 255.

DOI: 10.1016/s0927-0248(00)00289-0

Google Scholar

[6] Axel Eicke, Thomas Ciba, Dimitrios Hariskos, et al. Surf. Interface Anal. Vol. 45(2013), 1811.

Google Scholar

[7] Reiner Klenk, Alexander Steigert, Thorsten Rissom, et al. Prog. Photovolt: Res. Appl. Vol. 22 (2014), 161.

Google Scholar

[8] J. Herrero, M. T. Guttierez, C. Guillen, J. M. Dona, M. A. Martinez, A. M. Chaparro and R. Bayon. Thin Solid Films. Vol. 361-362(2000) 28.

Google Scholar

[9] N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, C. H. Fischer, C. Guillen, D. Hariskos, J. Herrero, R. Klenk, K. Kushiya, D. Lincot, R. Menner, T. Nakada, C. Platzer-Bjorkman, S. Spiering, A. N. Tiwari, T. Torndahl. Progress photovoltaics, Res. Appl. Vol. 18(2010).

DOI: 10.1002/pip.955

Google Scholar

[10] W. Vallejo, C. Quinones, G. Gordillo. Journal of Physics and Chemistry of Solids. Vol. 73(2012), 573.

Google Scholar