Measurement Studies on Superhydrophobic Materials

Article Preview

Abstract:

Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.Keywords: Wettability, contact angle, contact angle hysteresis, contact time, surface roughness, drag reduction measurements, morphology, surface friction, Reynolds number

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-142

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Lin, G. J. Ehlert, C. Bukowsky, H. A. Sodano: ACS Appl. Mater. Interfaces, 3 (7), 2011, 2200–2203.

DOI: 10.1021/am200527j

Google Scholar

[2] (http: /nanotech. ornl. gov/expertise/Qu%20Nano%20FS%20EERE. pdf).

Google Scholar

[3] S. Devasahaym, Sri. Bandyopadhyay: Evolution of novel size-dependent properties in polymer-matrix composites due to polymer filler interactions, Chapter 1, edited by Stephan Laske and Andreas Witschnigg New Developments in Polymer Composites Research, Nova publication, (2013).

Google Scholar

[4] S. Devasahayam: Super hydrophobic surfaces, in Advances in Polymer Science and Engineering, Bentham Science, UAE, 2014 (in press).

Google Scholar

[5] http: /www. bbc. co. uk/news/science-environment-25004942.

Google Scholar

[6] HJ. Ensikat, M. Mayser, W. Barthlott: Superhydrophobic and adhesive properties of surfaces: Testing the quality by an elaborated scanning electron microscopy method. Langmuir 28, 2012, 14338−14346.

DOI: 10.1021/la302856b

Google Scholar

[7] RE. Johnson, RH. Dettre: Contact angle hysteresis. J Phys Chem  68 (7) 1964,: 1744 –1750. doi: 10. 1021/j100789a012.

Google Scholar

[8] Y. Yuan, T. Randall Lee, G. Bracco, B. Holst: Ed., Surface science techniques, Springer-Verlag Berlin Heidelberg : Springer Series in Surface Sciences 51, 2013, DOI 10. 1007/978-3-642-34243-1_1.

DOI: 10.1007/978-3-642-34243-1

Google Scholar

[9] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe: Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir 16, 2000, 5754-5760.

DOI: 10.1021/la991660o

Google Scholar

[10] H. Murase, K. Nanishi, H. Kogure, T. Fujibayashi, K. Tamura, N. Haruta: J. Appl. Polym. Sci 54, 1994, (2051).

DOI: 10.1002/app.1994.070541307

Google Scholar

[11] B. Bhushan, Y. C. Jung: Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy 107, 2007, 1033–1041.

DOI: 10.1016/j.ultramic.2007.05.002

Google Scholar

[12] T. Young: An essay on the cohesion of fluids. Phil Trans R Soc Lond  95, 1805, 65 – 87.  doi: 10. 1098/rstl. 1805. 0005.

DOI: 10.1098/rstl.1805.0005

Google Scholar

[13] RN. Wenzel: Resistance of solid surfaces to wetting by water.  Ind Eng Chem , 28 (8) 1936: 988–994. doi: 10. 1021/ie50320a024.

DOI: 10.1021/ie50320a024

Google Scholar

[14] de Gennes, Pierre-Gilles: Capillarity and wetting phenomena, XV, 2004,  291 http: /www. springer. com/materials/surfaces+interfaces/book/978-0-387-00592-8 ISBN 0-387-00592-7.

DOI: 10.1063/1.1878340

Google Scholar

[15] D. Quere: Non-sticking Drops, Reports on Progress in Physics. 68 (11): 2005,  2495–2532.

DOI: 10.1088/0034-4885/68/11/r01

Google Scholar

[16] C. Extrand: Criteria for ultralyophobic surfaces. Langmuir 68, 2005, 2495–2532.

Google Scholar

[17] (http: /www. nature. com/nature/journal/v503/n7476/fig_tab/nature12740_F1. html).

Google Scholar

[18] CH. Choi, CJ. Kim: Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96, 2006, 066001.

DOI: 10.1103/physrevlett.96.066001

Google Scholar

[19] De Gennes PG: On fluid/wall slippage. Langmuir 2002, 18: 3413.

Google Scholar

[20] VT. Truong: Drag reduction technologies. Published by DSTO Aeronautical and Maritime research laboratory, Australia (2001).

Google Scholar

[21] SG. Kandlikar, and D. Schmitt, A.L. Carrano, JB. Taylor: Phys. Fluids 17, 2005, 100606.

Google Scholar

[22] MR. Flynn, JWM Bush: Underwater breathing: the mechanics of plastron respiration. J Fluid Mech 608, 2008, 275–296.

DOI: 10.1017/s0022112008002048

Google Scholar

[23] TJ. Johnson: Drag Measurements Across Patterned Surfaces, Thesis, University of Alabama, (2009).

Google Scholar

[24] MP. Schultz, JA. Bendick, ER. Holm, WM. Hertel: Economic impact of biofouling on a naval surface ship, Biofouling Vol. 27, No. 1, 2011, 87–98.

DOI: 10.1080/08927014.2010.542809

Google Scholar

[25] P. Stoodley, S. Wilson, L. Hall-Stoodley, JD. Boyle, M. Lappin-Scott, JW. Costerton: Growth and detachment of cell clusters from mature mixed species biofilms. Appl. Environ. Microbiol. 67, 2001, 5608–5613.

DOI: 10.1128/aem.67.12.5608-5613.2001

Google Scholar

[26] G. Wolf, JG Crespo, MAM Reis: Optical and spectroscopic methods for biofilm examination and activity analysis in water and wastewater treatment. Rev. Environ. Sci. Biotechnol. 1, 2002, 227–251.

DOI: 10.1023/a:1021238630092

Google Scholar

[27] TR. Neu, S. Wöelfl, JR. Lawrence: Three-dimensional differentiation of phototrophic biofilm constituents by multi-channel confocal and 2-photon laser scanning microscopy. J. Microbiol. Methods 56, 2004, 161–172.

DOI: 10.1016/j.mimet.2003.10.012

Google Scholar

[28] AS. Blenkinsopp, JW. Costerton: Understanding bacterial biofilms. Trends Biotechnol. 9, 1991, 38–143.

Google Scholar

[29] SB. Surman, JT. Walker, DT. Goddart, LHG. Morton, CW. Keevil, W. Weaver, A. Skinner, K. Hanson, D. Cadwell, J. Kurtz:. Comparison of microscope techniques for the examination of biofilms. J. Microbiol. Methods 25, 1996, 57–70.

DOI: 10.1016/0167-7012(95)00085-2

Google Scholar

[30] P. Le-Clech, Y. Marselina, Y. Ye, RM. Stuetz, V. Chen: Visualisation of polysaccharide fouling on microporous membrane using different characterization techniques. J. Membr. Sci. 290, 2007, 36–45.

DOI: 10.1016/j.memsci.2006.12.012

Google Scholar

[31] Peter Kukulka, David J. Kukulka, Mohan Devgun, Evaluation of Surface Roughness on the Fouling of Surfaces, http: /www. researchgate. net/publication/228507241_Evaluation_of_Surface_Roughness_on_the_Fouling_of_Surfaces/file/79e4150fa55baa00c8. pdf.

DOI: 10.1016/j.applthermaleng.2006.02.041

Google Scholar

[32] AF. Barton, JE. Sargison, JE. Osborn, K. Perkins & G. Hallegraeff: Characterizing the roughness of freshwater biofilms using a photogrammetric methodology, Biofouling 26, No. 4, 2010, 439–448.

DOI: 10.1080/08927011003699733

Google Scholar