Design, Simulation and Experiment of Polarization Transformers Based on Twisted Chiral Metamaterials

Article Preview

Abstract:

In this paper, we proposed a metamaterial polarization transformer which exhibits linear dichroism and linear conversion dichroism simultaneously. Through simulation and experiment studies in the microwave regime, it was found that only cross-polarization transmissions of x-polarized waves and co-polarization transmissions of y-polarized waves are allowed in the designed structures. As a result, the proposed metamaterials can transform any polarizations into y-polarizations with signal-to-noise ratios over 20 dB and transmissions over 0.6.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1196-1199

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lub, P. van de Witte, C. Doornkamp , et al. Stable Photopatterned Cholesteric Layers Made by Photoisomerization and Subsequent Photopolymerization for Use as Color Filters in Liquid-Crystal Displays[J] . Adv. Mater. 2003, 15 (17)1420-1425.

DOI: 10.1002/adma.200305125

Google Scholar

[2] M. R. Andrews, P. P. Mitra, R. de Carvalho, et al. Tripling the capacity of wireless communications using electromagnetic polarization[J] . Nature, 2001, 409, 316-318.

DOI: 10.1038/35053015

Google Scholar

[3] B. Yao, M. Lei, L. Ren et al. Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films[J]. Opt. Lett. 2005, 30(22) 3060 -3062.

DOI: 10.1364/ol.30.003060

Google Scholar

[4] J. Hao, Y. Yuan, L. Ran, et al. Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials[J]. Phys. Rev. Lett. 2007, 99, 063908.

DOI: 10.1103/physrevlett.99.063908

Google Scholar

[5] J. Y. Chin, M. Lu, T. J. Cui, Metamaterial polarizers by electric-field-coupled resonators[J]. Phys. Lett. 2008, 93, 251903.

DOI: 10.1063/1.3054161

Google Scholar

[6] M. Mutlu, A. E. Akosman, A. E. Serebryannikov, et al, Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators[J]. Opt. Lett. 2011, 36, 1653.

DOI: 10.1364/ol.36.001653

Google Scholar

[7] W. Sun, Q. He, J. Hao et al., A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Opt. Lett. 2011, 36, 927.

DOI: 10.1364/ol.36.000927

Google Scholar

[8] Mehmet Mutlu, Ahmet E. Akosman, Andriy E. Serebryannikov et al. Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling [J]. Appl. Phys. Lett. 2012, 100, 051909.

DOI: 10.1103/physrevlett.108.213905

Google Scholar

[9] J. K. Gansel, M. Thiel, M. S. Rill, et al, Gold Helix Photonic Metamaterial as Broadband Circular Polarizer[J], Science, 2009, 325, 1513.

DOI: 10.1126/science.1177031

Google Scholar

[10] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, et al., Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure[J]. Phys. Rev. Lett. 2006, 97, 16, 7401.

DOI: 10.1103/physrevlett.97.167401

Google Scholar

[11] C. Menzel, C. Helgert, C. Rockstuhl, et al. Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials[J]. Phys. Rev. Lett. 2010, 104, 253902.

DOI: 10.1103/physrevlett.104.253902

Google Scholar

[12] J. Han, H. Li, Y. Fan, et al. An ultrathin twist-structure polarization transformer based on fish-scale metallic wires[J]. Appl. Phys. Lett. 2011, 98, 151908.

DOI: 10.1063/1.3580608

Google Scholar

[13] C. Huang, Y. Feng, J. Zhao et al., Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures[J]. Phys. Rev. B, 2012, 85, 195131.

DOI: 10.1103/physrevb.85.195131

Google Scholar

[14] C. Menzel, C. Rockstuhl, F. Lederer et al., Advanced Jones calculus for the classification of periodic metamaterials[J]. Phys. Rev. A , 2010, 82, 053811.

DOI: 10.1103/physreva.82.053811

Google Scholar