The CPML for Hybrid Implicit-Explicit FDTD Method Based on Auxiliary Differential Equation

Article Preview

Abstract:

In this paper, an implementation of the complex-frequency-shifted perfectly matched layer (CPML) is developed for three-dimensional hybrid implicit-explicit (HIE) finite-difference time-domain (FDTD) method based on auxiliary differential equation (ADE). Because of the use of the ADE technique, this method becomes more straightforward and easier to implement. The formulations for the HIE-FDTD CPML are proposed. Numerical examples are given to verify the validity of the presented method. Results show that, both HIE-CPML and FDTD-CPML have almost the same reflection error, while their reflection error is about 30 dB, which is less than HIE Mur’s first-order results. The contour plots indicate that the maximum relative reflection as low as-72 dB is achieved by selecting and .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1869-1872

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell, s equations in isotropic media [J] IEEE Trans. Antennas Propag., 1996 (14), 302-307.

DOI: 10.1109/tap.1966.1138693

Google Scholar

[2] A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method [M], 2nd ed. Boston, MA: Artech House, (2000).

Google Scholar

[3] F. Zheng, Z. Chen, and J. Zhang. Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method [J]. IEEE Trans. Microw. Theory Tech., , 2000 48(9), 1550–1558.

DOI: 10.1109/22.869007

Google Scholar

[4] H. L. Chen, B. Chen, Y. Yi and D. G. Fang. Unconditionally Stable ADI–BOR–FDTD Algorithm for the Analysis of Rotationally Symmetric Geometries [J]. IEEE Microw. Wireless Comp. Lett., 2007 17(4), 304–306.

DOI: 10.1109/lmwc.2007.892991

Google Scholar

[5] G. S. Liu, G. J. Zhang and B. J. Hu. Numerical analysis for an improved ADI-FDTD method [J]. IEEE Microw. Wireless Compon. Lett., , 2008 18(9) 569-571.

DOI: 10.1109/lmwc.2008.2002441

Google Scholar

[6] B. K. Huang, G. Wang, Y. S. Jiang and W. B. Wang. A hybrid implicit explicit FDTD scheme with weakly conditional stability [J]. Microw. Opt. Tech. Lett., 2003 39 97–101.

DOI: 10.1002/mop.11138

Google Scholar

[7] J. Chen, J. Wang. A 3D hybrid implicit explicit FDTD scheme with weakly conditional stability [J]. Microw. Opt. Tech. Lett., 2006 48 2291–2294.

DOI: 10.1002/mop.21898

Google Scholar

[8] J. Chen and J. G. Wang. The body-of-revolution hybrid implicit-explicit finite-difference time-domain method with large time step size [J]. IEEE Trans. Electromagn. Compat., 2008 50(2), 369–374.

DOI: 10.1109/temc.2008.922791

Google Scholar

[9] Y. F. Mao, B. Chen and R. Xiong. WCS-FDTD algorithm for periodic structures [J]. IEEE Antennas Wireless Propag. Lett., 2011 10 1236–1238.

DOI: 10.1109/lawp.2011.2174331

Google Scholar

[10] Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee. A perfectly matched anisotropic absorber for use as an absorbing boundary condition [J]. IEEE Trans. Antennas Propag., 1995 43 1460-1463.

DOI: 10.1109/8.477075

Google Scholar

[11] J. A. Roden and S. D. Gedney. Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media [J]. Microw. Opt. Tech. Lett., 2000 27(5) 334–339.

DOI: 10.1002/1098-2760(20001205)27:5<334::aid-mop14>3.0.co;2-a

Google Scholar

[12] J. Berenger. Application of the CFS-PML to the absorption of evanescent waves in waveguides [J]. IEEE Microw. Wireless Compon. Lett., 2002 12 218–220.

DOI: 10.1109/lmwc.2002.1010000

Google Scholar