[1]
K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell, s equations in isotropic media [J] IEEE Trans. Antennas Propag., 1996 (14), 302-307.
DOI: 10.1109/tap.1966.1138693
Google Scholar
[2]
A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method [M], 2nd ed. Boston, MA: Artech House, (2000).
Google Scholar
[3]
F. Zheng, Z. Chen, and J. Zhang. Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method [J]. IEEE Trans. Microw. Theory Tech., , 2000 48(9), 1550–1558.
DOI: 10.1109/22.869007
Google Scholar
[4]
H. L. Chen, B. Chen, Y. Yi and D. G. Fang. Unconditionally Stable ADI–BOR–FDTD Algorithm for the Analysis of Rotationally Symmetric Geometries [J]. IEEE Microw. Wireless Comp. Lett., 2007 17(4), 304–306.
DOI: 10.1109/lmwc.2007.892991
Google Scholar
[5]
G. S. Liu, G. J. Zhang and B. J. Hu. Numerical analysis for an improved ADI-FDTD method [J]. IEEE Microw. Wireless Compon. Lett., , 2008 18(9) 569-571.
DOI: 10.1109/lmwc.2008.2002441
Google Scholar
[6]
B. K. Huang, G. Wang, Y. S. Jiang and W. B. Wang. A hybrid implicit explicit FDTD scheme with weakly conditional stability [J]. Microw. Opt. Tech. Lett., 2003 39 97–101.
DOI: 10.1002/mop.11138
Google Scholar
[7]
J. Chen, J. Wang. A 3D hybrid implicit explicit FDTD scheme with weakly conditional stability [J]. Microw. Opt. Tech. Lett., 2006 48 2291–2294.
DOI: 10.1002/mop.21898
Google Scholar
[8]
J. Chen and J. G. Wang. The body-of-revolution hybrid implicit-explicit finite-difference time-domain method with large time step size [J]. IEEE Trans. Electromagn. Compat., 2008 50(2), 369–374.
DOI: 10.1109/temc.2008.922791
Google Scholar
[9]
Y. F. Mao, B. Chen and R. Xiong. WCS-FDTD algorithm for periodic structures [J]. IEEE Antennas Wireless Propag. Lett., 2011 10 1236–1238.
DOI: 10.1109/lawp.2011.2174331
Google Scholar
[10]
Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee. A perfectly matched anisotropic absorber for use as an absorbing boundary condition [J]. IEEE Trans. Antennas Propag., 1995 43 1460-1463.
DOI: 10.1109/8.477075
Google Scholar
[11]
J. A. Roden and S. D. Gedney. Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media [J]. Microw. Opt. Tech. Lett., 2000 27(5) 334–339.
DOI: 10.1002/1098-2760(20001205)27:5<334::aid-mop14>3.0.co;2-a
Google Scholar
[12]
J. Berenger. Application of the CFS-PML to the absorption of evanescent waves in waveguides [J]. IEEE Microw. Wireless Compon. Lett., 2002 12 218–220.
DOI: 10.1109/lmwc.2002.1010000
Google Scholar