[1]
Cochocki A., Unbehauen R., Neural networks for optimization and signal processing[M], Chichester, NewYork, (1993).
Google Scholar
[2]
Gopalsamy K, He X Z. Delay-independent stability in bidirectional associative memory networks[J]. IEEE Transactions on Neural Networks, 1994, 5(6) 998-1002.
DOI: 10.1109/72.329700
Google Scholar
[3]
Wang Z, Liu Y, Liu X. On global asymptotic stability of neural networks with discrete and distributed delays[J]. Physics Letters A, 2005, 345(4) 299-308.
DOI: 10.1016/j.physleta.2005.07.025
Google Scholar
[4]
He Y, Liu G P, Rees D, et al. Stability analysis for neural networks with time-varying interval delay[J]. IEEE Transactions on Neural Networks, 2007, 18(6) 1850-1854.
DOI: 10.1109/tnn.2007.903147
Google Scholar
[5]
Wang Z, Liu Y, Yu L, et al. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters[J]. Physics Letters A, 2006 , 356(4) 346-352.
DOI: 10.1016/j.physleta.2006.03.078
Google Scholar
[6]
Kosko B. Adaptive bidirectional associative memories[J]. Applied optics, 1987, 26(23) 4947-4960.
DOI: 10.1364/ao.26.004947
Google Scholar
[7]
Zhang Z, Zhou D. Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks[J]. Journal of the Franklin Institute, 2010, 347(5) 763-780.
DOI: 10.1016/j.jfranklin.2010.02.007
Google Scholar
[8]
Gu H. Mean square exponential stability in high-order stochastic impulsive BAM neural networks with time-varying delays[J]. Neurocomputing, 2011, 74(5) 720-729.
DOI: 10.1016/j.neucom.2010.09.011
Google Scholar
[9]
Zhang Z, Liu K, Yang Y. New LMI-based condition on global asymptotic stability concerning BAM neural networks of neutral type[J]. Neurocomputing, 2012, 81(0)24-32.
DOI: 10.1016/j.neucom.2011.10.006
Google Scholar
[10]
Liu B. Global exponential stability for BAM neural networks with time-varying delays in the leakage terms[J]. Nonlinear Analysis: Real World Applications, 2013, 14(1) 559-566.
DOI: 10.1016/j.nonrwa.2012.07.016
Google Scholar
[11]
Liang J, Cao J. Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays[J]. Chaos, Solitons & Fractals, 2004, 22(4) 773-785.
DOI: 10.1016/j.chaos.2004.03.004
Google Scholar
[12]
Liu Y., Wang Z., Liu X., Asymptotic stability for neural networks with mixed time-delays: The discrete-time case [J]. Neural Networks 2009, 22(1)67-74.
DOI: 10.1016/j.neunet.2008.10.001
Google Scholar
[13]
Liu Z., Shu L., Zhong S., Ye M., Improved exponential stability criteria for discrete-time neural networks with time-varying delay [J]. Neurocomputing 2010 23(4-6)315-321.
DOI: 10.1016/j.neucom.2009.08.017
Google Scholar
[14]
Ou Y., Shi P., Liu H., A mode-dependent stability criterion for delayed discrete-time stochastic neural networks with markovian jumping parameters [J]. Neurocomputing 2010 73(7-9) 740-748.
DOI: 10.1016/j.neucom.2009.11.004
Google Scholar
[15]
Wu Z G, Park J H, Su H, et al. Stochastic stability analysis for discrete-time singular Markov jump systems with time-varying delay and piecewise-constant transition probabilities[J]. Journal of the Franklin Institute, 2012, 349(9) 2889-2902.
DOI: 10.1016/j.jfranklin.2012.08.012
Google Scholar
[16]
Wu Z G, Shi P, Su H, et al. Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling[J]. IEEE Transactions on Neural Networks and Learning Systems , 2012, 23(9) 1368-1376.
DOI: 10.1109/tnnls.2012.2202687
Google Scholar
[17]
L. Guo, H. Gu, Robust Stability of discrete systems with uncertainties and random delay[C], ICMTMA, Changsha, 2010 , 291-294.
Google Scholar
[18]
Liu X G, Tang M L, Martin R, et al. Discrete-time BAM neural networks with variable delays[J]. Physics Letters A, 2007, 367(4) 322-330.
DOI: 10.1016/j.physleta.2007.03.037
Google Scholar