Computer Simulation: A Tool for Researching the Basic Physical Properties of NiAl and Ni3Al

Article Preview

Abstract:

The crystal structures, lattice parameters, volumes, elastic constants, bulk moduli and shear moduli of the binary NiAl and Ni3Al alloys have been predicted by taking the first-principles plane-wave method in combination with ultra-soft pseudo-potentials. Also the pressure dependence of Cij, B and G are described and quantitatively discussed. The calculated results agree with the experimental data. The elastic constants obtained from our calculations meet their mechanical stability criteria. The DOS results show that the strong Ni-Al interaction plays an important role in the chemical bond of the Ni-Al alloys. Our predictions should be testified by the experimental investigations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

216-219

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Frommeyer, R. Rablbauer and H.J. Schäfer: Intermetallics Vol. 18 (2010), p.299.

Google Scholar

[2] A. Misra, R. Gibala and R.D. Noebe: Metall. Mater. Trans. A Vol. 30A (1999), p.1003.

Google Scholar

[3] H. Hou, Z. Wen, Y. Zhao, L. Fu, N. Wang and P. Han: Intermetallics Vol. 44 (2014), p.110.

Google Scholar

[4] H. Yasuda, T. Takasugi and M. Koiwa: Acta. Metall. Mater. Vol. 40 (1992), p.381.

Google Scholar

[5] Y. Wang, Z.K. Liu and L.Q. Chen: Acta Mater. Vol. 52 (2004), p.2665.

Google Scholar

[6] S. He, P. Peng, L. Peng, Y. Chen, H. Wei and Z. Hu: J. Alloys Compd. Vol. 597 (2014), p.243.

Google Scholar

[7] Z.F. Zhang, B. Gleeson, K. Jung, L. Li and J.C. Yang: Acta Mater. Vol. 60 (2012), p.5273.

Google Scholar

[8] N.P. Padture, M. Gell and E.H. Jordan: Science Vol. 296 (2002), p.280.

Google Scholar

[9] J.Q. He, Y. Wang, M.F. Yan, Y. Yang and L. Wang: Comput. Mater. Sci. Vol. 50 (2010), p.545.

Google Scholar

[10] A. Hussain, S. Aryal, P. Rulis, M.A. Choudhry, J. Chen and W.Y. Ching: J. Alloys Compd. Vol. 509 (2011), p.5230.

Google Scholar

[11] S.L. Shang, Y. Wang, D.E. Kim and Z.K. Liu: Comput. Mater. Sci. Vol. 47 (2010), p.1040.

Google Scholar

[12] S. Saadi, B. Hinnemann, C.C. Rappel, S. Helveg, F. Abild-Pedersen and J.K. Nǿrskov: Surf. Sci. Vol. 605 (2011), p.582.

Google Scholar

[13] H.Z. Fu, Z.F. Hou, J. Fu and Y.M. Ma: Intermetallics Vol. 42 (2013), p.156.

Google Scholar

[14] Y. Wang, J.Q. He, M.F. Yan, C.Q. Li, L. Wang and Y. Zhou: J. Mater. Sci. Technol. Vol. 27 (2011), p.719.

Google Scholar

[15] N. Troullier and J.L. Martins: Phys. Rev. B Vol. 43 (1991), p. (2006).

Google Scholar

[16] H.J. Monkhorst and J.D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[17] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[18] P.M. Rao, S. Suryanarayana, K.S. Murthy and S.N. Naidu: J. Phys.: Cond. Mat. Vol. 1 (1989), p.5357.

Google Scholar

[19] S. Yip, J. Li, M. Tang and J. Wang: Mater. Sci. Eng. A Vol. 317 (2001), p.236.

Google Scholar

[20] J.W. Oh, C.Y. Kim, K.S. Nahm and K.S. Sim: J. Alloys Compd. Vol. 278 (1998), p.270.

Google Scholar

[21] J.Y. Rhee, B.N. Harmon and D.W. Lynch: Phys. Rev. B Vol. 55 (1997), p.4124.

Google Scholar