Newly Determined Crystal Structure and Optical Property of the Intermetallic NiAl and Ni3Al Alloys: A First-Principles Computer Simulated Investigation

Article Preview

Abstract:

Using quantum mechanics plane-wave approach based on the density functional theory, the lattice constants of NixAl at different Ni concentrations (x=1, 3) are predicted. Optical properties such as dielectric function, energy loss function and reflectivity are also investigated. Results show that with the increase of Ni constituent, the location of the peak in loss function moves to the lower energy region, but the peak height increases. At 0eV, the reflectivity increases rapidly with the Ni concentration. The reflectivity of NiAl and Ni3Al are pronounced in the UV region (not in the visible light region). The dielectric properties, namely the real and imaginary parts of the dielectric function, changed significantly with Ni constituent.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

220-223

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.I. Isaev, A.I. Lichtenstein, Y.K. Vekilov, E.A. Smirnova, I.A. Abrikosov, S.I. Simak, R. Ahuja and B. Johansson: Solid State Commun. Vol. 129 (2004), p.809.

DOI: 10.1016/j.ssc.2003.11.018

Google Scholar

[2] Y. Han, B. Ünal and J.W. Evans: Phys. Rev. Lett. Vol. 108 (2012), p.216102.

Google Scholar

[3] M. Tan and B.V. King: Phys. Rev. B Vol. 73 (2006), p.075414.

Google Scholar

[4] Q. Wu, S.S. Li, Y. Ma and S.K. Gong: Vacuum Vol. 93 (2013), p.37.

Google Scholar

[5] T. Czeppe and S. Wierzbinski: Int. J. Mechan. Sci. Vol. 42 (2000), p.1499.

Google Scholar

[6] K.M. Downard: Euro. J. Mass Spectrom. Vol. 13 (2007), p.177.

Google Scholar

[7] M. Tan and B.V. King: Appl. Surf. Sci. Vol. 203-204 (2003), p.248.

Google Scholar

[8] J.Q. He, Y. Wang, M.F. Yan, Y. Yang and L. Wang: Comput. Mater. Sci. Vol. 50 (2010), p.545.

Google Scholar

[9] A. Hussain, S. Aryal, P. Rulis, M.A. Choudhry, J. Chen and W.Y. Ching: J. Alloys Compd. Vol. 509 (2011), p.5230.

Google Scholar

[10] B.J. Alder and T.E. Wainwright: J. Chem. Phys. Vol. 31 (1959), p.459.

Google Scholar

[11] S. Yu, C.Y. Wang, T. Yu and J. Cai: Physica B Vol. 396 (2007), p.138.

Google Scholar

[12] S. Takizawa, S. Miura and T. Mohri: Intermetallics Vol. 13 (2005), p.1137.

Google Scholar

[13] S. Tang, J.C. Wang, G.C. Yang and Y.H. Zhou: Intermetallics Vol. 19 (2011), p.229.

Google Scholar

[14] S. Le Pevedic, D. Schmaus and C. Cohen: Surf. Sci. Vol. 601 (2007), p.395.

Google Scholar

[15] N. Troullier and J.L. Martins: Phys. Rev. B Vol. 43 (1991), p. (2006).

Google Scholar

[16] H.J. Monkhorst and J.D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[17] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[18] H.Z. Fu, Z.F. Hou, J. Fu and Y.M. Ma: Intermetallics Vol. 42 (2013), p.156.

Google Scholar

[19] H. Hou, Z. Wen, Y. Zhao, L. Fu, N. Wang and P. Han: Intermetallics Vol. 44 (2014), p.110.

Google Scholar

[20] M. Jafari, H. R. Hajiyani, Z. Sohrabikia and H. Galavani: Comput. Mater. Sci. Vol. 77 (2013), p.224.

Google Scholar

[21] X. Yu, Y. Du, B. Chang, Z. Ge and H. Wang: Optik Vol. 124 (2013), p.4402.

Google Scholar

[22] J.D. Sharma, M. Sharma, N. Kumar and P.K. Ahluwalia: J. Phys.: Conf. Ser. Vol. 472 (2013), p.012010.

Google Scholar