Synthesis of a Novel Donor Unit for Organic Light-Emitting Materials: 10-octyl-3,7-di(thiophen-2-Yl)-10H-Phenothiazine

Article Preview

Abstract:

A novel electron donor unit based on phenothiazine has been designed and constructed. The target compound 10-octyl-3,7-di (thiophen-2-yl)-10H-phenothiazine was easily synthesized in high yields with a milder and efficient route via the Suzuki coupling reaction. Optical spectra show that, from the solution to the solid state, both the absorption and fluorescence spectra of the target compound are small blue-shifted. Moreover, the fluorescence spectra exhibit the emission maxima of the target compound ranging from 485 nm to 496 nm, which belongs to blue-green light region. As expected, the target compound should be a promising donor to construct D-A type materials for applications in organic light-emitting diodes (OLEDs).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

284-287

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jiao, G. S.; Thoresen, L. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 14668-14669.

Google Scholar

[2] Lai, R. Y.; Fabrizio, E. F.; Lu, L.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2001, 123, 9112-9118.

Google Scholar

[3] Li, J. Y.; Liu, D.; Hong, Z. R.; Tong, S. W.; Wang, P. F.; Ma, C. W.; Lengyel, O.; Lee, C. S.; Kwong, H. L.; Lee, S. T. Chem. Mater. 2003, 15, 1486-1490.

DOI: 10.1021/cm0209822

Google Scholar

[4] (a) Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610-3616. (b)Zhang, X. H.; Chen, B. J.; Lin, X. Q.; Wong, O. Y.; Lee. C. S.; Kwong, H. L.; Lee, S. T.; Wu, S. K. Chem. Mater. 2001, 13, 1565-1569. (c) Li, J. Y.; Liu, D.; Hong, Z. R.; Tong, S. W.; Wang, P. F.; Ma, C. W.; Lengyel, O.; Lee, C. S.; Kwong, H. L.; Lee, S. T. Chem. Mater. 2003, 15, 1486-1490.

DOI: 10.1021/cm0209822

Google Scholar

[5] Sun, X. B.; Liu, Y. Q,; Xu, X. J,; Yang, C. H,; Yu, G,; Chen, S. Y,; Zhao, Z. H,; Qiu, W. F,; Li, Y. F,; Zhu, D. B,; J. Phys. Chem. B, 2005, 109, 21.

Google Scholar

[6] (a) Goes, M.; Verhoeven, J. W.; Hofstraat, H.; Brunner, K. Chem. Phys. Chem 2003, 4, 349. (b) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. (c) Yan, H.; Lee, P.; Armstrong, N. R.; Graham, A.; Evmenenko, G. A.; Dutta, P.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 3172.

DOI: 10.1021/cm049473l

Google Scholar

[7] Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. (b) Shirota, Y. J. Mater. Chem. 2005, 15, 75.

DOI: 10.1021/cm049473l

Google Scholar

[8] Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 2001, 79, 3711. (b) Justin Thomas, K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404. (c) Morin, J. F.; Drolet, N.; Tao, Y.; Leclerc, M. Chem. Mater. 2004, 16, 4619.

Google Scholar

[9] (a) Kong, X.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992. (b) Hwang, D. H.; Kim, S. K.; Park, M. J.; Lee, J. H.; Koo, B. W.; Kang, I. N.; Kim, S. H.; Zyung, T. Chem. Mater. 2004, 16, 1298.

Google Scholar

[10] J. Cao, J. W. K amkf and M. D. Cuetis. Chem. Mater., 2003, 15, 404.

Google Scholar