[1]
Correa E, Santos J, Klein A. Microstructure and mechanical properties of WC Ni–Si based cemented carbides developed by powder metallurgy. International Journal of Refractory Metals and Hard Materials. 2010; 28: 572-5.
DOI: 10.1016/j.ijrmhm.2010.04.003
Google Scholar
[2]
Ahmadian M, Chandra T, Wexler D, Calka A. Effect of Boron on the WC Morphology in Sub Micron Tungsten Carbide-Aluminide Composites. Materials Science Forum. 2007; 561-565: 675-8.
DOI: 10.4028/www.scientific.net/msf.561-565.675
Google Scholar
[3]
Tiegs T, Alexander K, Plucknett K, Menchhofer P, Becher P, Waters S. Ceramic composites with a ductile Ni3Al binder phase. Materials Science and Engineering: A. 1996; 209: 243-7.
DOI: 10.1016/0921-5093(95)10128-4
Google Scholar
[4]
Ahmadian M, Wexler D, Chandra T, Calka A. Abrasive wear of WC–FeAl–B and WC–Ni3Al–B composites. International Journal of Refractory Metals and Hard Materials. 2005; 23: 155-9.
DOI: 10.1016/j.ijrmhm.2004.12.002
Google Scholar
[5]
Becher PF, Plucknett KP. Properties of Ni3Al-bonded Titanium Carbide Ceramics. Journal of the European Ceramic Society. 1998; 18: 395-400.
DOI: 10.1016/s0955-2219(97)00124-6
Google Scholar
[6]
Plucknett KP, Tiegs TN, Becher PF, Waters SB, Menchhofer PA. Ductile intermetallic toughened carbide matrix composites. Wiley Online Library; 1996. pp.314-21.
DOI: 10.1002/9780470314821.ch37
Google Scholar
[7]
Almond E, Roebuck B. Identification of optimum binder phase compositions for improved WC hard metals. Materials Science and Engineering: A. 1988; 105: 237-48.
DOI: 10.1016/0025-5416(88)90502-2
Google Scholar
[8]
Talanova GV, Padalko AG, Panov VS, Veselov AN, Shvorneva LI. Effect of barothermal processing on the structure and properties of a WC-Ni3Al alloy. Inorganic Materials. 2008; 44: 244-7.
DOI: 10.1134/s0020168508030060
Google Scholar
[9]
Long J-z, Zhang Z-j, Xu T, Peng W, Wei X-y, Lu B-z, et al. WC–Ni3Al–B composites prepared through Ni+Al elemental powder route. Transactions of Nonferrous Metals Society of China. 2012; 22: 847-52.
DOI: 10.1016/s1003-6326(11)61255-7
Google Scholar
[10]
Herber R P, Schubert W D, Lux B. Hardmetals with rounded, WC grains[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(5): 360-364.
DOI: 10.1016/j.ijrmhm.2005.11.014
Google Scholar
[11]
Kim S, Han S H, Park J K, et al. Variation of WC grain shape with carbon content in the WC–Co alloys during liquid-phase sintering[J]. Scripta materialia, 2003, 48(5): 635-639.
DOI: 10.1016/s1359-6462(02)00464-5
Google Scholar
[12]
Konyashin I, Hlawatschek S, Ries B, et al. On the mechanism of WC coarsening in WC-Co hardmetals with various carbon contents[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 234-243.
DOI: 10.1016/j.ijrmhm.2008.09.001
Google Scholar
[13]
Fernandes C, Senos A. Cemented carbide phase diagrams: A review[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(4): 405-418.
DOI: 10.1016/j.ijrmhm.2011.02.004
Google Scholar
[14]
Tiegs T, Menchhofer P. Hardmetals based on Ni3Al as the binder phase[J]. P/M in aerospace, defense and demanding applications-1995, 1995, 211-218.
Google Scholar
[15]
Panov V, Gol'dberg M. Interaction of tungsten carbide with aluminum nickelide Ni3Al[J]. Powder Metallurgy and Metal Ceramics, 2009, 48(7): 445-448.
DOI: 10.1007/s11106-009-9146-3
Google Scholar