[1]
Rohatgi P K. Metal matrix composites[J]. Defence Science Journal, 2013, 43(4): 323-349.
Google Scholar
[2]
Travitzky N, Bonet A, Dermeik B, et al. Additive Manufacturing of Ceramic‐Based Materials[J]. Advanced Engineering Materials, (2014).
DOI: 10.1002/adem.201400097
Google Scholar
[3]
Liu Z, Wang X, Han Q, et al. Synthesis of submicrometer-sized TiC particles in aluminum melt at low melting temperature[J]. Journal of Materials Research, 2014, 29(07): 896-901.
DOI: 10.1557/jmr.2014.56
Google Scholar
[4]
Jiang K, Liu X. The effect of melting temperature and time on the TiC particles[J]. Journal of Alloys and Compounds, 2009, 484(1): 95-101.
DOI: 10.1016/j.jallcom.2009.04.112
Google Scholar
[5]
Premkumar M K, Chu M G. Synthesis of TiC particulates and their segregation during solidification in In Situ processed AI-TiC composites[J]. Metallurgical and Materials Transactions A, 1993, 24(10): 2358-2362.
DOI: 10.1007/bf02648608
Google Scholar
[6]
Wang Z, Liu X, Zhang J, et al. Reaction mechanism in the ball-milled Al—Ti—C powders[J]. Journal of materials science letters, 2003, 22(20): 1427-1429.
Google Scholar
[7]
Kennedy A R, Weston D P, Jones M I, et al. Reaction in Al-Ti-C powders and its relation to the formation and stability of TiC in Al at high temperatures[J]. Scripta materialia, 2000, 42(12): 1187-1192.
DOI: 10.1016/s1359-6462(00)00356-0
Google Scholar
[8]
Yang B, Chen G, Zhang J. Effect of Ti/C additions on the formation of Al< sub> 3 Ti of in situ TiC/Al composites[J]. Materials & Design, 2001, 22(8): 645-650.
DOI: 10.1016/s0261-3069(01)00029-2
Google Scholar
[9]
Yang B, Wang F, Zhang J S. Microstructural characterization of in situ TiC/Al and TiC/Al–20Si–5Fe–3Cu–1Mg composites prepared by spray deposition[J]. Acta materialia, 2003, 51(17): 4977-4989.
DOI: 10.1016/s1359-6454(03)00292-1
Google Scholar
[10]
Jiang Q C, Wang H Y, Guan Q F, et al. Effect of the Temperature of Molten Magnsium on the Thermal Explosion Synthesis Reaction of Al–Ti–C System for Fabricating TiC/Mg Composite[J]. Advanced Engineering Materials, 2003, 5(10): 722-725.
DOI: 10.1002/adem.200300364
Google Scholar
[11]
Liang Y F, Zhou J E, Dong S Q. Microstructure and tensile properties of in situ TiC< sub> p/Al–4. 5 wt. % Cu composites obtained by direct reaction synthesis[J]. Materials Science and Engineering: A, 2010, 527(29): 7955-7960.
DOI: 10.1016/j.msea.2010.08.098
Google Scholar
[12]
Bauri R, Yadav D, Suhas G. Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite[J]. Materials Science and Engineering: A, 2011, 528(13): 4732-4739.
DOI: 10.1016/j.msea.2011.02.085
Google Scholar
[13]
Kim W J, Yu Y J. The effect of the addition of multiwalled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites[J]. Scripta Materialia, 2014, 72: 25-28.
DOI: 10.1016/j.scriptamat.2013.10.008
Google Scholar
[14]
Mazaheri Y, Meratian M, Emadi R, et al. Comparison of microstructural and mechanical properties of Al–TiC, Al–B< sub> 4 C and Al–TiC–B< sub> 4 C composites prepared by casting techniques[J]. Materials Science and Engineering: A, 2013, 560: 278-287.
DOI: 10.1016/j.msea.2012.09.068
Google Scholar
[15]
Ding H, Liu X. Influence of Si on stability of TiC in Al melts[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1465-1472.
DOI: 10.1016/s1003-6326(11)60882-0
Google Scholar