[1]
Toma D, Brandl W, Marginean G. Wear and corrosion behaviour of thermally sprayed cermet coatings [J]. Surface and Coatings Technology, 2001, 138(2): 149-158.
DOI: 10.1016/s0257-8972(00)01141-5
Google Scholar
[2]
Bergmann C P, Vicenzi J. Protection against erosive wear using thermal sprayed cermet: a review [M]. Springer Berlin Heidelberg, (2011).
DOI: 10.1007/978-3-642-21987-0_1
Google Scholar
[3]
Zhang J, Wang Z, Lin P, et al. Effect of Sealing Treatment on Corrosion Resistance of Plasma-Sprayed NiCrAl/Cr2O3-8 wt. % TiO2 Coating [J]. Journal of thermal spray technology, 2011, 20(3): 508-513.
DOI: 10.1007/s11666-010-9528-6
Google Scholar
[4]
Cliche G, Dallaire S. Synthesis and deposition of TiC-Fe coatings by plasma spraying [J]. Surface and Coatings Technology, 1991, 46(2): 199-206.
DOI: 10.1016/0257-8972(91)90162-p
Google Scholar
[5]
Sidhu T S, Prakash S, Agrawal R D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni-and Fe-based superalloys [J]. Surface and Coatings Technology, 2006, 201(1): 273-281.
DOI: 10.1016/j.surfcoat.2005.11.108
Google Scholar
[6]
Saha G C, Khan T I, Zhang G A. Erosion–corrosion resistance of microcrystalline and near-nanocrystalline WC–17Co high velocity oxy-fuel thermal spray coatings [J]. Corrosion Science, 2011, 53(6): 2106-2114.
DOI: 10.1016/j.corsci.2011.02.028
Google Scholar
[7]
Li J, Yu Z, Wang H, et al. Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB+TiC fabricated on Ti6Al4V by laser cladding[J]. Rare Metals, 2010, 29(5): 465-472.
DOI: 10.1007/s12598-010-0151-y
Google Scholar
[8]
Guozhi X, Xiaolong S, Dongjie Z, et al. Microstructure and corrosion properties of thick WC composite coating formed by plasma cladding [J]. Applied Surface Science, 2010, 256(21): 6354-6358.
DOI: 10.1016/j.apsusc.2010.04.016
Google Scholar
[9]
Roos E, Naga S M, Richter R N, et al. Electron beam physical vapour deposition and mechanical properties of c-ZrO2-ZTA-coatings on alloy 617 substrates [J]. Ceramics International, 2012, 38(4): 3317-3326.
DOI: 10.1016/j.ceramint.2011.12.041
Google Scholar
[10]
Li J S, Zhang C R, Li B, et al. Boron nitride coatings by chemical vapor deposition from borazine [J]. Surface and Coatings Technology, 2011, 205(12): 3736-3741.
DOI: 10.1016/j.surfcoat.2011.01.032
Google Scholar
[11]
Varma A, Mukasyan A S. Combustion synthesis of advanced materials: Fundamentals and applications [J]. Korean Journal of Chemical Engineering, 2004, 21(2): 527-536.
DOI: 10.1007/bf02705444
Google Scholar
[12]
Mukasyan A S, White J D E. Combustion joining of refractory materials [J]. International Journal of Self-Propagating High-Temperature Synthesis, 2007, 16(3): 154-168.
DOI: 10.3103/s1061386207030089
Google Scholar
[13]
Morsi K. The diversity of combustion synthesis processing: a review [J]. Journal of Materials Science, 2012, 47(1): 68-92.
Google Scholar
[14]
La P, Bai M, Xue Q, et al. A study of Ni3Al coating on carbon steel surface via the SHS casting route [J]. Surface and Coatings Technology, 1999, 113(1): 44-51.
DOI: 10.1016/s0257-8972(98)00820-2
Google Scholar
[15]
Niu M, Bi Q, Kong L, et al. A study of Ni3Si-based composite coating fabricated by self-propagating high temperature synthesis casting route [J]. Surface and Coatings Technology, 2011, 205(17): 4249-4253.
DOI: 10.1016/j.surfcoat.2011.03.031
Google Scholar
[16]
Merzhanov A G. Fundamentals, achievements, and perspectives for development of solid-flame combustion [J]. Russian Chemical Bulletin, 1997, 46(1): 1-27.
DOI: 10.1007/bf02495340
Google Scholar