Effect of SO2 on Mn-Mg-Ox Catalyst Treated by Non-Thermal Plasma for NO Catalytic Oxidation

Article Preview

Abstract:

The effect of MgO addition on SO2 tolerance of MnOx for the NO catalytic oxidation was investigated in this work. MgO addition significantly promotes the SO2 resistance of MnOx at low temperature range of 50–250°C. The slight decrease in catalytic activity over Mn-Mg-Ox exposure to SO2 is attributed to the partially deactivation of the catalytic active site poisoned by SO2. Through XRD and FT-IR characterization, MgO may effectively inhibit the competitive adsorption between NOx and SO2 in manganese site, and enhance SO2 adsorption on the magnesia surface.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

490-493

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] PranitS. Metkar, Michael P. Harold, Vemuri Balakotaiah. Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B-Environ., 111–112 (2012): 67-80.

DOI: 10.1016/j.apcatb.2011.09.019

Google Scholar

[2] Li K., Tang X.L., Yi H.H., et al. Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst, Chem. Eng. J., 192 (2012): 99-104.

DOI: 10.1016/j.cej.2012.03.087

Google Scholar

[3] E. Park, S. Chin, J. Jeong, et al. Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species, Micropor. Mesopor. Mat., 163 (2012): 96-101.

DOI: 10.1016/j.micromeso.2012.07.009

Google Scholar

[4] Idriss A., Noelia G. -H., Agustín B. -L., et al. Influence of the physico-chemical properties of CeO2–ZrO2 mixed oxides on the catalytic oxidation of NO to NO2, Appl. Surf. Sci., 256 (2010): 7706–7712.

DOI: 10.1016/j.apsusc.2010.06.042

Google Scholar

[5] Qiang Wang, So Ye Park, Linhai Duan, et al. Activity, stability and characterization of NO oxidation catalyst Co/KxTi2O5, Appl. Catal. B-Environ., 85 (2008): 10–16.

DOI: 10.1016/j.apcatb.2008.06.022

Google Scholar

[6] X.L. Tang, K. Li, H.H. Yi, et al. MnOx Catalysts Modified By Nonthermal Plasma for NO Catalytic Oxidation, J. Phys. Chem. C, 116 (2012): 10017−10028.

DOI: 10.1021/jp300664f

Google Scholar

[7] K. Li, X.L. Tang, H.H. Yi, et al. Non-thermal Plasma Assisted Catalytic Oxidation NO over Mn-Ni-Ox Catalysts at Low-Temperature, Chem. Eng. J., 383-390 (2012): 3092-3098.

DOI: 10.4028/www.scientific.net/amr.383-390.3092

Google Scholar

[8] K. Li, X.L. Tang, H.H. Yi, et al. Research on manganese oxide catalysts surface pretreated with non-thermal plasma for NO catalytic oxidation capacity enhancement, Appl. Surf. Sci., 264 (2013): 557-562.

DOI: 10.1016/j.apsusc.2012.10.064

Google Scholar

[9] Li H., Tang X.L., Yi H.H., et al. Low-temperature catalytic oxidation of NO over Mn-Ce-Ox catalyst, J. Rare Earth, 28 (2010): 64-68.

DOI: 10.1016/s1002-0721(09)60052-1

Google Scholar

[10] William F. Schneider, John Li, Kenneth C. Hass. Combined Computational and Experimental Investigation of SOx Adsorption on MgO, J. Phys. Chem. B, 105 (2001): 6972-6979.

DOI: 10.1021/jp010747r

Google Scholar

[11] J. Wang, C.L. Li. SO2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium–aluminate spinel sulfur-transfer catalyst, Appl. Surf. Sci., 161 (2000): 406–416.

DOI: 10.1016/s0169-4332(00)00298-1

Google Scholar

[12] J.P. Breena, R. Burcha, C. Hardacrea, et al. An investigation of the thermal stability and sulphur tolerance of Ag/γ-Al2O3 catalysts for the SCR of NOx with hydrocarbons and hydrogen, Catal. Today, 70 (2007): 36–44.

Google Scholar

[13] Costas N. Costa, Petros G. Savva, et al. Industrial H2-SCR of NO on a novel Pt/MgO–CeO2catalyst, Appl. Catal. B-Environ., 75 (2007): 147–156.

Google Scholar