[1]
PranitS. Metkar, Michael P. Harold, Vemuri Balakotaiah. Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B-Environ., 111–112 (2012): 67-80.
DOI: 10.1016/j.apcatb.2011.09.019
Google Scholar
[2]
Li K., Tang X.L., Yi H.H., et al. Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst, Chem. Eng. J., 192 (2012): 99-104.
DOI: 10.1016/j.cej.2012.03.087
Google Scholar
[3]
E. Park, S. Chin, J. Jeong, et al. Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species, Micropor. Mesopor. Mat., 163 (2012): 96-101.
DOI: 10.1016/j.micromeso.2012.07.009
Google Scholar
[4]
Idriss A., Noelia G. -H., Agustín B. -L., et al. Influence of the physico-chemical properties of CeO2–ZrO2 mixed oxides on the catalytic oxidation of NO to NO2, Appl. Surf. Sci., 256 (2010): 7706–7712.
DOI: 10.1016/j.apsusc.2010.06.042
Google Scholar
[5]
Qiang Wang, So Ye Park, Linhai Duan, et al. Activity, stability and characterization of NO oxidation catalyst Co/KxTi2O5, Appl. Catal. B-Environ., 85 (2008): 10–16.
DOI: 10.1016/j.apcatb.2008.06.022
Google Scholar
[6]
X.L. Tang, K. Li, H.H. Yi, et al. MnOx Catalysts Modified By Nonthermal Plasma for NO Catalytic Oxidation, J. Phys. Chem. C, 116 (2012): 10017−10028.
DOI: 10.1021/jp300664f
Google Scholar
[7]
K. Li, X.L. Tang, H.H. Yi, et al. Non-thermal Plasma Assisted Catalytic Oxidation NO over Mn-Ni-Ox Catalysts at Low-Temperature, Chem. Eng. J., 383-390 (2012): 3092-3098.
DOI: 10.4028/www.scientific.net/amr.383-390.3092
Google Scholar
[8]
K. Li, X.L. Tang, H.H. Yi, et al. Research on manganese oxide catalysts surface pretreated with non-thermal plasma for NO catalytic oxidation capacity enhancement, Appl. Surf. Sci., 264 (2013): 557-562.
DOI: 10.1016/j.apsusc.2012.10.064
Google Scholar
[9]
Li H., Tang X.L., Yi H.H., et al. Low-temperature catalytic oxidation of NO over Mn-Ce-Ox catalyst, J. Rare Earth, 28 (2010): 64-68.
DOI: 10.1016/s1002-0721(09)60052-1
Google Scholar
[10]
William F. Schneider, John Li, Kenneth C. Hass. Combined Computational and Experimental Investigation of SOx Adsorption on MgO, J. Phys. Chem. B, 105 (2001): 6972-6979.
DOI: 10.1021/jp010747r
Google Scholar
[11]
J. Wang, C.L. Li. SO2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium–aluminate spinel sulfur-transfer catalyst, Appl. Surf. Sci., 161 (2000): 406–416.
DOI: 10.1016/s0169-4332(00)00298-1
Google Scholar
[12]
J.P. Breena, R. Burcha, C. Hardacrea, et al. An investigation of the thermal stability and sulphur tolerance of Ag/γ-Al2O3 catalysts for the SCR of NOx with hydrocarbons and hydrogen, Catal. Today, 70 (2007): 36–44.
Google Scholar
[13]
Costas N. Costa, Petros G. Savva, et al. Industrial H2-SCR of NO on a novel Pt/MgO–CeO2catalyst, Appl. Catal. B-Environ., 75 (2007): 147–156.
Google Scholar