Dye Adsorbent Prepared by Crosslinking of Poly(γ-glutamic acid) and Gelatin

Article Preview

Abstract:

The present paper describes the preparation of novel biodegradable adsorbent based on cross-linking of poly (γ-glutamic acid) (γ-PGA) and gelatin and characterization of its Rhodamine B dye adsorption capability. Cross-linking effect was measured with the effect of adsorbent adsorbing ionic dyes Rhodamine B. In the experiment, the various factors which had influence on the adsorption effect, including preparationtemperature, preparation pH value, concentrations of cross-linking agent, cross-linking time were analyzed. The results showed that the adsorbent had good adsorption performance after cross-linking. The adsorbent was characterized by fourier transform infrared spectrum (FTIR), revealing that there were amide bonds between gelatin and poly (γ-glutamic acid) by cross-linking reaction.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

809-813

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K Ravikumar, B Deebika, K Balu. Decolourization of Aqueous Dye Solutions by a Novel Adsorbent: Application of Statistical Designs and Surface Plots for the Optimization and Regression Analysis [J]. J. Hazard. Mater., 2005, 122(1-2): 75-83.

DOI: 10.1016/j.jhazmat.2005.03.008

Google Scholar

[2] Inbaraj B.S., Chien J.T., Ho G.H., Yang J., Chen B.H. Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly (γ-glutamic acid). Biochem. Eng., 2006a, 31, 204-215.

DOI: 10.1016/j.bej.2006.08.001

Google Scholar

[3] Inbaraj B.S., Chiu C.P., Ho G.H., Yang J., Chen B.H. Removal of cationic dyes from aqueous solution using an anionic poly-γ-glutamic acid-based adsorbent. J. Hazard. Mater., 2006b, 137, 226-234.

DOI: 10.1016/j.jhazmat.2006.01.057

Google Scholar

[4] P V Messina, P C Schulz. Adsorption of Reactive Dyes on Titania-Silica Mesoporous [J]. J. Colloids Interf. Sci., 2006, 299(1): 305-320.

DOI: 10.1016/j.jcis.2006.01.039

Google Scholar

[5] S Netpradit, P Thiravetyan, S Towprayoon. Evaluation of Metal Hydroxide Sludge for Reactive Dye Adsorption in a Fixed-Bed Column System [J]. Water Res., 2004, 38(1): 71-78.

DOI: 10.1016/j.watres.2003.09.007

Google Scholar

[6] S Sadri Moghaddama, M R Alavi Moghaddama, M Aramib. Coagulation/Flocculation Process for Dye Removal Using Sludge from Water Treatment Plant: Optimization through Response Surface Methodology [J]. J. Hazard. Mater., 2010, 175(1-3): 651-657.

DOI: 10.1016/j.jhazmat.2009.10.058

Google Scholar

[7] M S Lucas, J A Peres. Decolorization of the Azo Dye Reactive Black 5 by Fenton and Photo-Fenton Oxidation [J]. Dyes Pigments, 2006, 71(3): 236-244.

DOI: 10.1016/j.dyepig.2005.07.007

Google Scholar

[8] S Ledakowicz, M Solecka, R Zylla. Biodegradation, Decolourisation and Detoxification of Textile Wastewater Enhanced by Advanced Oxidation Processes [J]. J. Biotechnol., 2001, 89(2-3): 175-184.

DOI: 10.1016/s0168-1656(01)00296-6

Google Scholar

[9] S Chakraborty, M K Purkait, S DasGupta. Nanofiltration of Textile Plant Effluent for Color Removal and Reduction in COD[J]. Sep. Purif. Technol., 2003, 31(2): 141-151.

DOI: 10.1016/s1383-5866(02)00177-6

Google Scholar

[10] M K Purkait, S DasGupta, S De. Micellar Enhanced Ultrafiltration of Eosin Dye Using Hexadecyl Pyridinium Chloride [J]. J. Hazard. Mater., 2006, 136(3): 972-977.

DOI: 10.1016/j.jhazmat.2006.01.040

Google Scholar

[11] Inbaraj B.S., Chiu C.P., Ho G.H., Yang J., Chen B.H. Effects of temperature and pHon adsorption of basic brown by the bacterial biopolymer poly (γ-glutamic acid). Bioresour. Technol., 2008, 99, 1026-1035.

DOI: 10.1016/j.biortech.2007.03.008

Google Scholar

[12] Inbaraj B.S., Wang J.S., Lu J.F., Siao F.Y., Chen B.H. Adsorption of toxic mercury (Ⅱ) by an extracellular biopolymer poly (γ-glutamic acid). Bioresour. Technol., 2009, 100, 200-207.

DOI: 10.1016/j.biortech.2008.05.014

Google Scholar

[13] Shih I.L., Van Y.T. The production of poly (γ-glutamic acid) from microorganisms and its various application . Bioresour. Technol., 2001, 79, 207-225.

DOI: 10.1016/s0960-8524(01)00074-8

Google Scholar

[14] Ho G.H., Ho T.I., Hsieh K.H., Su Y.C., Lin P.Y., Yang J., Yang K.H., Yang S.C. γ-Polyglutamic acid produced by Bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities. Chin. Chem. Soc., 2006, 53, 1363-1384.

DOI: 10.1002/jccs.200600182

Google Scholar

[15] Bajaj I., Singhal R. Poly(glutamic acid) - an emerging biopolymer of commercial interest. Bioresour. Technol., 2011, 102, 5551-5561.

DOI: 10.1016/j.biortech.2011.02.047

Google Scholar

[16] Wang T.L., Kao T.H., Inbaraj, B.S., Su Y.T., Chen B.H. Inhibition effect of poly (γ-glutamic acid) on lead-induced toxicity in mice. Agric. Food Chem., 2010, 57, 12562-12567.

DOI: 10.1021/jf1034509

Google Scholar

[17] Wang C.H., Lin Y.T., Yeh C.L., Sharma Y.C. Magnetic Fe3O4 nanoparticles for adsorptive removal of acid dye (new coccine) from aqueous solutions. Water Sci. Technol., 2010, 62, 844-851.

DOI: 10.2166/wst.2010.310

Google Scholar

[18] Wang Fengqing. Researched on Bacillus subtilis Producing Poly γ-glutamic acid With Fermentation, Dissertation for the Degree of Master, Harbin University of Commerce, (2011).

Google Scholar