[1]
A. Ardehali Barani, D. Ponge, D. Raabe, Refinement of grain boundary carbides in a Si-Cr spring steel by thermomechanical treatment, Mat. Sci. Eng. A 241 (2006) 194-201.
DOI: 10.1016/j.msea.2006.04.002
Google Scholar
[2]
C. S. Lee, K. A. Lee, D. M. Li, S. J. Yoo, W. J. Nam, Microstructural influence on fatigue properties of a high-strength spring steel, Mat. Sci. Eng. A 241 (1998) 30-37.
DOI: 10.1016/s0921-5093(97)10469-5
Google Scholar
[3]
Y. Prawoto, M. Ikeda, S. K. Manville, A. Nishikawa, Design and failure modes of automotive suspension springs, Eng. Fail. Anal. 15 (2008) 1155-1174.
DOI: 10.1016/j.engfailanal.2007.11.003
Google Scholar
[4]
M. Kobayashi, T. Matsui, Y. Murakami, Mechanism of creation of compressive residual stress by shot peening, Int. J. Fatigue. 20 (1998) 351-357.
DOI: 10.1016/s0142-1123(98)00002-4
Google Scholar
[5]
D. M. Li, K. W. Kim, C. S. Lee, Low cycle fatigue data evaluation for a high strength spring steel, Int. J. Fatigue 19 (1997) 607-612.
DOI: 10.1016/s0142-1123(97)00074-1
Google Scholar
[6]
J. –C. Shin, S. Lee, J. H. Ryu, Correlation of microstructure and fatigue properties of two high-strength spring steels, Int. J. Fatigue 21 (1999) 571-579.
DOI: 10.1016/s0142-1123(99)00010-9
Google Scholar
[7]
S. Teleki, Enhancement of fatigue life of SAE 9245 steel by shot peening, Mater. Lett. 57 (2002) 604-608.
DOI: 10.1016/s0167-577x(02)00838-8
Google Scholar
[8]
M. A. S. Torres, H. J. C. Voorwald, An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, Int. J. Fatigue 24 (2002) 877-886.
DOI: 10.1016/s0142-1123(01)00205-5
Google Scholar
[9]
K. K. Liu, M. R. Hill, The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons, Tribol. Int. 42 (2009) 1250-1262.
DOI: 10.1016/j.triboint.2009.04.005
Google Scholar
[10]
S. Bagherifard, M. Guagliano, Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening, Eng. Fract. Mech. 81 (2012) 56-68.
DOI: 10.1016/j.engfracmech.2011.06.011
Google Scholar
[11]
Y. Hu, Y. Wu, G. Wang, J. Guo, Surface yield strength gradient versus residual stress relaxation of 7075 aluminum alloy, Adv. Mater. Res. 160-162 (2011) 241-246.
DOI: 10.4028/www.scientific.net/amr.160-162.241
Google Scholar
[12]
S. Bagheri, M. Guagliano, Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys, Surface Eng. 25 (2009) 3-14.
DOI: 10.1179/026708408x334087
Google Scholar
[13]
B. G. Scuracchio, N. B. de Lima, C. G. Schön, Role of residual stresses induced by double peening on fatigue durability, Mater. Design 47 (2013) 672-676.
DOI: 10.1016/j.matdes.2012.12.066
Google Scholar
[14]
M. N. James, D. J. Hughes, Z. Chen, H. Lombard, D. G. Hattingh, D. Asquith, J. R. Yates, P. J. Webster, Residual stress and fatigue performance, Eng. Fail. Anal. 14 (2007) 384-395.
DOI: 10.1016/j.engfailanal.2006.02.011
Google Scholar
[15]
K. A. Soady, B. G. Mellor, G. D. West, G. Harrison, A. Morris, P. A S. Reed, Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue, Int. J. Fatigue 54 (2013).
DOI: 10.1016/j.ijfatigue.2013.03.019
Google Scholar
[16]
K. A. Soady, Life assessment methodologies incorporating shot peening process effects: mechanistic consideration of residual stresses and strain hardening Part 1 – effect of shot peening on fatigue resistance, Mater. Sci. Tech 29 (2013) 637-651.
DOI: 10.1179/1743284713y.0000000222
Google Scholar
[17]
K. A. Soady, Life assessment methodologies incorporating shot peening process effects: mechanistic consideration of residual stresses and strain hardening Part 2 – approaches to fatigue lifing after shot peening, Mater. Sci. Tech 29 (2013).
DOI: 10.1179/1743284713y.0000000223
Google Scholar
[18]
G. A. Webster. Residual stress distributions and their influence on fatigue lifetimes, Int. J. Fatigue 23 (2001) S375-S383.
Google Scholar
[19]
R. Menig, L. Pintschovius, V. Schulze, O. Vöhringer, Depth profiles of macro residual stresses in thin shot peened steel plates determined by X-ray and neutron diffraction, Scripta Mater 45 (2001) 977-983.
DOI: 10.1016/s1359-6462(01)01063-6
Google Scholar
[20]
E. Macherauch, P. Müller, Das sin2ψ-Verfahren der röntgenoraphischen Spannungsmessung, Z. Angew. Physik, 13 (1961) 305-312.
Google Scholar
[21]
R. E. Reed-Hill, Physical Metallurgy Principles, second ed., Brooks/Cole Engineering Division, Monterey, (1973).
Google Scholar
[22]
P. Fu, K. Zhan, C. Jiang, Micro-structure and surface properties of 18CrNiMo7-6 steel after multistep shot peening, Mater. Design 51 (2013) 309-314.
DOI: 10.1016/j.matdes.2013.04.011
Google Scholar