Residual Stress Gradients in AISI 9254 Steel Springs Submitted to Shot Peening and Heat Treatment for Increased Fatigue Resistance

Article Preview

Abstract:

The presence of surface and subsurface residual stresses in steel components has a significant influence on fatigue resistance. In the present work, surface modification of AISI 9254 steel coil springs by heat treatment and multiple shot-peening procedures was investigated. Samples were characterized in the as-coiled, quenched, quenched and tempered, as well as submitted to single and double shot peening treatments. Depth resolved residual stress profiles were determined by X-ray diffraction combined with electrolytic dissolution of the steel. Fracture analysis was performed subsequent to fatigue tests by scanning electron microscopy. It was possible to show that double shot peening led to an increase in compressive stresses in the immediate sub-surface region, which improved fatigue resistance relative to the other tested conditions.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A. Ardehali Barani, D. Ponge, D. Raabe, Refinement of grain boundary carbides in a Si-Cr spring steel by thermomechanical treatment, Mat. Sci. Eng. A 241 (2006) 194-201.

DOI: 10.1016/j.msea.2006.04.002

Google Scholar

[2] C. S. Lee, K. A. Lee, D. M. Li, S. J. Yoo, W. J. Nam, Microstructural influence on fatigue properties of a high-strength spring steel, Mat. Sci. Eng. A 241 (1998) 30-37.

DOI: 10.1016/s0921-5093(97)10469-5

Google Scholar

[3] Y. Prawoto, M. Ikeda, S. K. Manville, A. Nishikawa, Design and failure modes of automotive suspension springs, Eng. Fail. Anal. 15 (2008) 1155-1174.

DOI: 10.1016/j.engfailanal.2007.11.003

Google Scholar

[4] M. Kobayashi, T. Matsui, Y. Murakami, Mechanism of creation of compressive residual stress by shot peening, Int. J. Fatigue. 20 (1998) 351-357.

DOI: 10.1016/s0142-1123(98)00002-4

Google Scholar

[5] D. M. Li, K. W. Kim, C. S. Lee, Low cycle fatigue data evaluation for a high strength spring steel, Int. J. Fatigue 19 (1997) 607-612.

DOI: 10.1016/s0142-1123(97)00074-1

Google Scholar

[6] J. –C. Shin, S. Lee, J. H. Ryu, Correlation of microstructure and fatigue properties of two high-strength spring steels, Int. J. Fatigue 21 (1999) 571-579.

DOI: 10.1016/s0142-1123(99)00010-9

Google Scholar

[7] S. Teleki, Enhancement of fatigue life of SAE 9245 steel by shot peening, Mater. Lett. 57 (2002) 604-608.

DOI: 10.1016/s0167-577x(02)00838-8

Google Scholar

[8] M. A. S. Torres, H. J. C. Voorwald, An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, Int. J. Fatigue 24 (2002) 877-886.

DOI: 10.1016/s0142-1123(01)00205-5

Google Scholar

[9] K. K. Liu, M. R. Hill, The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons, Tribol. Int. 42 (2009) 1250-1262.

DOI: 10.1016/j.triboint.2009.04.005

Google Scholar

[10] S. Bagherifard, M. Guagliano, Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening, Eng. Fract. Mech. 81 (2012) 56-68.

DOI: 10.1016/j.engfracmech.2011.06.011

Google Scholar

[11] Y. Hu, Y. Wu, G. Wang, J. Guo, Surface yield strength gradient versus residual stress relaxation of 7075 aluminum alloy, Adv. Mater. Res. 160-162 (2011) 241-246.

DOI: 10.4028/www.scientific.net/amr.160-162.241

Google Scholar

[12] S. Bagheri, M. Guagliano, Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys, Surface Eng. 25 (2009) 3-14.

DOI: 10.1179/026708408x334087

Google Scholar

[13] B. G. Scuracchio, N. B. de Lima, C. G. Schön, Role of residual stresses induced by double peening on fatigue durability, Mater. Design 47 (2013) 672-676.

DOI: 10.1016/j.matdes.2012.12.066

Google Scholar

[14] M. N. James, D. J. Hughes, Z. Chen, H. Lombard, D. G. Hattingh, D. Asquith, J. R. Yates, P. J. Webster, Residual stress and fatigue performance, Eng. Fail. Anal. 14 (2007) 384-395.

DOI: 10.1016/j.engfailanal.2006.02.011

Google Scholar

[15] K. A. Soady, B. G. Mellor, G. D. West, G. Harrison, A. Morris, P. A S. Reed, Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue, Int. J. Fatigue 54 (2013).

DOI: 10.1016/j.ijfatigue.2013.03.019

Google Scholar

[16] K. A. Soady, Life assessment methodologies incorporating shot peening process effects: mechanistic consideration of residual stresses and strain hardening Part 1 – effect of shot peening on fatigue resistance, Mater. Sci. Tech 29 (2013) 637-651.

DOI: 10.1179/1743284713y.0000000222

Google Scholar

[17] K. A. Soady, Life assessment methodologies incorporating shot peening process effects: mechanistic consideration of residual stresses and strain hardening Part 2 – approaches to fatigue lifing after shot peening, Mater. Sci. Tech 29 (2013).

DOI: 10.1179/1743284713y.0000000223

Google Scholar

[18] G. A. Webster. Residual stress distributions and their influence on fatigue lifetimes, Int. J. Fatigue 23 (2001) S375-S383.

Google Scholar

[19] R. Menig, L. Pintschovius, V. Schulze, O. Vöhringer, Depth profiles of macro residual stresses in thin shot peened steel plates determined by X-ray and neutron diffraction, Scripta Mater 45 (2001) 977-983.

DOI: 10.1016/s1359-6462(01)01063-6

Google Scholar

[20] E. Macherauch, P. Müller, Das sin2ψ-Verfahren der röntgenoraphischen Spannungsmessung, Z. Angew. Physik, 13 (1961) 305-312.

Google Scholar

[21] R. E. Reed-Hill, Physical Metallurgy Principles, second ed., Brooks/Cole Engineering Division, Monterey, (1973).

Google Scholar

[22] P. Fu, K. Zhan, C. Jiang, Micro-structure and surface properties of 18CrNiMo7-6 steel after multistep shot peening, Mater. Design 51 (2013) 309-314.

DOI: 10.1016/j.matdes.2013.04.011

Google Scholar