On-Chip MEMS-Based Internal Stress Actuated Structures for the Mechanical Testing of Freestanding Thin Film Materials

Article Preview

Abstract:

An on-chip suite of MEMS-based mechanical testing structures has been developed to extract the mechanical properties of freestanding thin films under tensile loading. The working principle relies on the use of high tensile internal stress within an actuator beam to deform a specimen beam made of another material owing to the etching of an underlying sacrificial layer. In order to control the deformation rate imposed during the etching process, the rectangular shape of actuator beam design has been recently upgraded to a tapered shape. The deformation rate is estimated from the modelling of the two extreme cases defining the upper and lower limit. The proof of concept is demonstrated experimentally from the investigation of the mechanical response of 100 nm-thick freestanding copper thin films deposited by e-beam evaporation.

You have full access to the following eBook

Info:

[1] M. Kasbari, C. Rivero, S. Blayac, F. Cacho, O. Bostrom, R. Fortunier, Direct Local Strain Measurements in Damascene Interconnects, Mater. Res. Soc. Symp. Proc. 990 (2007) 241-246.

DOI: 10.1557/proc-0990-b07-06

Google Scholar

[2] A. Boé, A. Safi, M. Coulombier, T. Pardoen, J. -P. Raskin, Internal stress relaxation based method for elastic stiffness characterization of very thin films, Thin Solid Films 518 (2009) 260-264.

DOI: 10.1016/j.tsf.2009.06.062

Google Scholar

[4] M.S. Baker, M.P. de Boer, N.F. Smith, L.K. Warne, M.B. Sinclair, Integrated Measurement-Modeling Approaches for Evaluating Residual Stress Using Micromachined Fixed–Fixed Beams, J. Microelectromech. Syst. 11 (2002) 743-753.

DOI: 10.1109/jmems.2002.805210

Google Scholar

[5] J. Florando, W. Nix, A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates., J. Mech. Phys. Solids. 53 (2005) 619-638.

DOI: 10.1016/j.jmps.2004.08.007

Google Scholar

[6] B.D. Jensen, M.P. de Boer, N.D. Masters, F. Bitsie, D. A. LaVan, Interferometry of Actuated Microcantilevers to Determine Material Properties and Test Structure Nonidealities in MEMS, J. Microelectromech. Syst. 10 (2001) 336-346.

DOI: 10.1109/84.946779

Google Scholar

[7] M.A. Haque, M.T.A. Saif, Application of mems force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM, Sens. Act. A 97-98 (2002) 239-245.

DOI: 10.1016/s0924-4247(01)00861-5

Google Scholar

[8] M.A. Haque, M.T.A. Saif, Microscale materials testing using MEMS actuators, J. Microelectromech. Syst. 10 (2001) 146-152.

DOI: 10.1109/84.911103

Google Scholar

[9] H. Espinosa, Y. Zhu, N. Moldovan, Design and operation of a mems-based material testing system for nanomechanical characterization, J. Microelectromech. Syst. 16 (2007) 1219-1231.

DOI: 10.1109/jmems.2007.905739

Google Scholar

[10] D. Fabrègue, N. André, M. Coulombier, J. -P. Raskin and T. Pardoen, Multipurpose nanomechanical testing machines revealing the size-dependent strength and high ductility of pure aluminium submicron films, Micro & Nano Lett. 2 (2007) 13-16.

DOI: 10.1049/mnl:20065068

Google Scholar

[11] S. Gravier, M. Coulombier, A. Safi, N. André, A. Boé, J. -P. Raskin, T. Pardoen, New On-Chip Nanomechanical Testing Laboratory - Applications to Aluminum and Polysilicon Thin Films, J. Microelectromech. Syst. 18 (2009) 555-569.

DOI: 10.1109/jmems.2009.2020380

Google Scholar

[12] U. Bhaskar, V. Passi, S. Houri, E. Escobedo-Cousin, S.H. Olsen, J. -P. Raskin, T. Pardoen, On-chip tensile testing of nanoscale silicon free-standing beams, J. Mater. Res. 27 (2012) 571-579.

DOI: 10.1557/jmr.2011.340

Google Scholar

[13] M. -S. Colla, B. Wang, H. Idrissi, D. Schryvers, J. -P. Raskin, T. Pardoen, High strength-ductility of thin nanocrystalline palladium films with nanoscale twins: On-chip testing and aggregate model, Acta Mater. 60 (2012) 1795-1806.

DOI: 10.1016/j.actamat.2011.11.054

Google Scholar

[14] M. Coulombier, G. Guisbiers, M. -S. Colla, R. Vayrette, J. -P. Raskin, T. Pardoen, On-chip stress relaxation testing method for freestanding thin film materials, Rev. Sc. Inst. 83 (2012) 105004-105004-9.

DOI: 10.1063/1.4758288

Google Scholar