Formation and Magic Number Characteristic of Clusters during Rapid Solidification of Mg2Ca

Article Preview

Abstract:

A molecular dynamics simulation study has been performed for a system consisting of 15,000 atoms to investigate the formation and magic number characteristics of various clusters formed during the rapid solidification. Results indicate that the icosahedral cluster (12 0 12 0) plays key role in the glass transition. The size distribution of clusters in the system showing magic number characteristics, and the magic number sequence in the Mg2Ca system is 13, 19, 25, 36, 37, ....This magic number sequence is quite similar with that of the system of metal Al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

438-441

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. P. Staiger, A. M. Pietak, J. Huadmai, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterial. 27 (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[2] Z. Y. Hou, L. X. Liu, R. S. Liu, et al. Short-range and medium-range order in Ca7Mg3 metallic glass. J. Appl. Phys. 107 (2010) 083511-083517.

DOI: 10.1063/1.3357304

Google Scholar

[3] L. L. Zhou, R. S. Liu, Z. A. Tian. Simulation of formation and evolution of nano-clusters during rapid solidification of liquid Ca70Mg30 alloy. Trans. Nonferrous Met. Soc. China. 23 (2013) 2354-2360.

DOI: 10.1016/s1003-6326(13)62741-7

Google Scholar

[4] M. B. Kannan, R. K. S. Raman. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterial. 29 (2008) 2306-2314.

DOI: 10.1016/j.biomaterials.2008.02.003

Google Scholar

[5] Y. Q. Cheng, E. Ma. Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science. 56 (2011) 379-473.

DOI: 10.1016/j.pmatsci.2010.12.002

Google Scholar

[6] S. Wang, S. K. Lai. Structure and electrical resistivities of liquid binary alloys. J. Phys. F: Metal. Phys. 10 (1980) 2717-2737.

DOI: 10.1088/0305-4608/10/12/012

Google Scholar

[7] D. H. Li, X. R. Li, S. Wang. Variational calculation of Helmholtz free energies with applications to the sp-type liquid metals. J. Phys. F: Metal. Phys. 16 (1986) 309-321.

DOI: 10.1088/0305-4608/16/3/010

Google Scholar

[8] S. S. Jaswal, J. Hafner. Atomic and electronic structure of crystalline and amorphous alloys. I. Calcium-magnesium compounds. Phys. Rev. B. 38 (1988) 7311-7319.

DOI: 10.1103/physrevb.38.7311

Google Scholar

[9] K. Vollmayr, W. Kob, K. Binder. How do the properties of a glass depend on the cooling rate? A computer simulation study of a Lennard-Jones system. J. Chem. Phys. 105 (1996) 4714-4728.

DOI: 10.1063/1.472326

Google Scholar

[10] J. D. Honeycutt, H. C. Anderson. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91 (1987) 4950-4963.

DOI: 10.1021/j100303a014

Google Scholar

[11] R. S. Liu, K. J. Dong, Z. A. Tian, et al. Formation and magic number characteristics of clusters formed during solidification processes. J. Phys.: Condens. Matter. 19 (2007) 196103-196117.

DOI: 10.1088/0953-8984/19/19/196103

Google Scholar

[12] F. X. Liu, R. S. Liu, Z. Y. Hou, et al. Formation mechanism of atomic cluster structures in Al-Mg alloy during rapid solidification processes. Ann. Physics. 324 (2009) 332-342.

DOI: 10.1016/j.aop.2008.10.010

Google Scholar

[13] R. S. Liu, H. R. Liu, C. X. Zhen, et al. Microstructure Transition of Liquid Metal Al During Heating and Cooling Processes. Chin. Phys. Lett. 18 (2001) 1383-1385.

Google Scholar