An Integrated Comparison for Working Fluids Selection in Both Subcritical and Supercritical ORC

Article Preview

Abstract:

A comparison focusing on the properties and the system performances in working fluids selection for both subcritical and supercritical ORC is proposed. 16 candidates including wet, isentropic and dry fluids are considered. Thermal efficiency, exergy efficiency, Specific net power output and UA value are set as the system performance indicators. Under the premise of working fluids safety and comprehensive consideration of all aspects of system performances, R152a by supercritical ORC is determined by integrated comparison.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

703-712

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. C. Hung, Waste heat recovery of organic Rankine cycle using dry fluids. Energy Conversion and Management 42 (2001) 539-553.

DOI: 10.1016/s0196-8904(00)00081-9

Google Scholar

[2] T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 35 (2010) 1403-1411.

DOI: 10.1016/j.energy.2009.11.025

Google Scholar

[3] V. Maizza, A. Maizza, Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Applied Thermal Engineering 21 (2001) 381-390.

DOI: 10.1016/s1359-4311(00)00044-2

Google Scholar

[4] B. -T. Liu, K. -H. Chien, C. -C. Wang, Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29 (2004) 1207-1217.

DOI: 10.1016/j.energy.2004.01.004

Google Scholar

[5] H. D. Madhawa Hettiarachchi, M. Golubovic, W. M. Worek, Y. Ikegami, Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy 32 (2007) 1698-1706.

DOI: 10.1016/j.energy.2007.01.005

Google Scholar

[6] B. Saleh, G. Koglbauer, M. Wendland, J. Fischer, Working fluids for low-temperature organic Rankine cycles. Energy 32 (2007) 1210-1221.

DOI: 10.1016/j.energy.2006.07.001

Google Scholar

[7] B. F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis, Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering 29 (2009) 2468-2476.

DOI: 10.1016/j.applthermaleng.2008.12.025

Google Scholar

[8] A. A. Lakew, O. Bolland, Working fluids for low-temperature heat source. Applied Thermal Engineering 30 (2010) 1262-1268.

DOI: 10.1016/j.applthermaleng.2010.02.009

Google Scholar

[9] A. I. Papadopoulos, M. Stijepovic, P. Linke, On the systematic design and selection of optimal working fluids for Organic Rankine Cycles. Applied Thermal Engineering 30 (2010) 760-769.

DOI: 10.1016/j.applthermaleng.2009.12.006

Google Scholar

[10] C. He et al., The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle. Energy 38 (2012) 136-143.

DOI: 10.1016/j.energy.2011.12.022

Google Scholar

[11] Y. -J. Baik, M. Kim, K. C. Chang, S. J. Kim, Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source. Applied Energy 88 (2011) 892-898.

DOI: 10.1016/j.apenergy.2010.08.029

Google Scholar

[12] Y. Chen, P. Lundqvist, A. Johansson, P. Platell, A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering 26 (2006).

DOI: 10.1016/j.applthermaleng.2006.04.009

Google Scholar

[13] S. Klein, Engineering Equation Solver (EES). Professional version 8.

Google Scholar