High Efficient Treatment of Coal Gasification Wastewater by Precipitation and Photocatalysis Process

Article Preview

Abstract:

This study was conducted to investigate a novel treatment method for coal gasification wastewater (CGWW) by combining magnesium ammonium phosphate (MAP) precipitation and photocatalysis processes. The optimized conditions for MAP process were explored, and the removal efficiency of NH4-N by the MAP treatment can exceed 85% at the mole ratio of 1.2~1.4 MgCl2 and 0.9 Na2HPO4 to NH4+ as precipitators, and the pH value at 9.0~9.5. The MAP precipitates are an useful slow-available-fertilizer. After the photocatalysis treatment of 5hrs, the total removal efficiency for NH4-N, COD, Phenol and CN exceeds 99%, 95%,90% and 90%,respectively.This technology with low cost and high efficiency has big potential to treat CGWW practically on a large scale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

749-753

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Chen, R. Xu. Clean coal technology development in China, Energy Policy, 38( 2010)2123- 2130.

DOI: 10.1016/j.enpol.2009.06.003

Google Scholar

[2] W. T Zhao, Y.X. Shen, K. Xiao , X. Huang. Fouling characteristics in a membrane bioreactor coupled with anaerobic-anoxic–oxic process for coke waste-water treatment, Bioresour. Technol. 101( 2010)3876-3883.

DOI: 10.1016/j.biortech.2009.12.141

Google Scholar

[3] J.L. Wang, X.C. Quan, L.B. Wu , Y. Qian, W. Hegemann. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant waste-water, Process Biochem. 38( 2002)777-781.

DOI: 10.1016/s0032-9592(02)00227-3

Google Scholar

[4] W. Wei, H.J. Han . Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater, Bioresour. Technol. 103 (2012)95-100.

DOI: 10.1016/j.biortech.2011.10.002

Google Scholar

[5] J. Yao, Z.R. He, X.Q. Kou, Z.H. Shao, L. Jia, B.M. Li, An experimental investigation on phenol removal from coal gasification wastewater by pervaporation, J. Harbin Inst. Technol. 44 (2012)264- 267.

Google Scholar

[6] J. Yao, Z.R. He, A.G. Luo, Q. Zhao, Z.H. Shao, L. Jia, B.M. Li . An experimental investigation on phenol wastewater treatment from coal gasification by pervaporation with NaY molecular Sieve filling membrane, J. Harbin Inst. Technol. 19 (2012).

Google Scholar

[7] W.Q. Zhang, P.H. Rao, H. Zhang. The Role of Diatomite Particles in the Activated Sludge System for Treating Coal Gasification Wastewater, Chin. J. Chem. Eng. 17 (2009)167-170.

DOI: 10.1016/s1004-9541(09)60050-1

Google Scholar

[8] M.A. Aboulhassan, S. Souabi, A. Yaacoubi, M. Baudu, Improvement of paint effluents coagulation using natural and synthetic coagulant aids, J. Hazard. Mater. 138(2006)40-45.

DOI: 10.1016/j.jhazmat.2006.05.040

Google Scholar

[9] L. Yan , Y.F. Wang, H.Z. Ma, Z.P. Han. Feasibility of fly ash-based composite coagulant for coal washing wastewater, J. Hazard. Mater. 203-204 (2012) 221-228.

DOI: 10.1016/j.jhazmat.2011.12.004

Google Scholar

[10] J.C.S.S. Menezes, R.A. Silva, I.S. Arce, I.A.H. Schneider, Production of a polyalumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage, Miner. Eng. 23 (2010) 249-251.

DOI: 10.1016/j.mineng.2009.11.008

Google Scholar

[11] T. Zhao K.G. Zhou,H. Wang. Research Progress in the Study of MAP Chemical Precipitation Process for Ammonium-nitrogen Containing W astewater, Safety Environ. Eng. 14(2007) 61-64.

Google Scholar

[12] I. Stratful M.D. Scrimshaw,J. Nlester, Conditions influencing the precipitation of magnesium ammoniumphosphate, Water Res.35 ( 2001) 4191-4199.

DOI: 10.1016/s0043-1354(01)00143-9

Google Scholar

[13] S. Zhang, C. Yao, X, Feng, Repeated use of MgNH4PO4·6H2O residues for ammonium removal by acid dipping, Desalination,170(2004)27-32.

DOI: 10.1016/j.desal.2003.12.009

Google Scholar

[14] K. Nakata , A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C: Photochem Rev. 13 (2012) 169-189.

Google Scholar

[15] H. Tong , S.X. Ouyang , Y.P. Bi , N. Umezawa. Nano-photocatalytic Materials: Possibilities and Challenges, Adv. Mater. 24 ( 2012) 229–251.

DOI: 10.1002/adma.201102752

Google Scholar

[16] M.X. Jing, C. Han, Z. Wang, and X.Q. Shen, Preparation and Photocatalytic Properties of Core-shell Nano-TiO2@ α-Al2O3 microspheres, J. Nanosci. Nanotechnol. 14(2014)6996-7000.

Google Scholar

[17] M.X. Jing, C. Han, Z. Wang, and X.Q. Shen, Magnetic Core–Shell Nano-TiO2/Al2O3/NiFe2O4 Microparticles with Enhanced Photocatalytic Activity, J. Nanosci. Nanotechnol. 13(2013) 4949-4953.

Google Scholar