Quantum Chemical Investigation and Detonation Characterization of DNAZ·HCl

Article Preview

Abstract:

3,3-Dinitroazetidinium hydrochloride (DNAZ·HCl) is a novel insensitive high energy explosive. The density functional theory (DFT) method of the Amsterdam density functional (ADF) was used to calculate the geometry and frequencies. The detonation velocity (D) and detonation pressure (P) of DNAZ·HCl were estimated using the nitrogen equivalent equation according to the experimental density. Results showed that the initial decomposition step of DNAZ·HCl is the loss of NO2 from C2 and Cl is the point of molecular reactivity. D and P are 6881.40 m·s-1 and 20.85GPa, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-80

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. G. Archibald, R. Gilardi, K. Baum, et al. J. Org. Chem. 55 (1990), 2920–2924.

Google Scholar

[2] M. A. Hiskey, M. D. Coburn, M. A. Mitchell, et al. J. Heterocycl. Chem. 29 (1992), 1855–1856.

Google Scholar

[3] M. A. Hiskey, M. M. Stincipher, J. E. Brown. J. Energ. Mater. 11 (1993), 157–165.

Google Scholar

[4] H. X. Ma, B. Yan, Z. N. Li, et al. J. Hazard. Mater. 169 (2009), 1068–1073.

Google Scholar

[5] H. X. Ma, B. Yan, J. F. Li, et al. J. Mol. Struct. 981 (2010), 103–110.

Google Scholar

[6] H. X. Ma, B. Yan, Y. H. Ren, et al. J. Therm. Anal. Calorim. 103 (2011), 569–575.

Google Scholar

[7] B. Yan, H. X. Ma, N. N. Zhao, et al. J. Therm. Anal. Calorim. 110 (2012), 1253–1257.

Google Scholar

[8] B. Yan, N. N. Zhao, T. Mai, et al. Russ. J. Phys. Chemi. A. 86 (2012), 1962–(1968).

Google Scholar

[9] B. Yan, H. Y. Li, N. N. Zhao, et al. Acta Cryst. E 68(2012), o3376.

Google Scholar

[10] B. Yan, N. N. Zhao, H. X. Ma, et al. S. Afr. J. Chem. 66 (2013), 136–139.

Google Scholar

[11] B. Yan, H. Y. Li, N. N. Zhao, et al. J. Chem. Eng. Data. 58 (2013), 3033–3038.

Google Scholar

[12] B. Yan, H. Y. Li, N. N. Zhao, et al. J. Chem. Thermodynamics. 69 (2014), 152–156.

Google Scholar

[13] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, et al. J. Comput. Chem. 22 (2001), 931–967.

Google Scholar

[14] C. Fonseca Guerra, J.G. Snijders, G. te Velde, et al. Theor. Chem. Acc. 99 (1998), 391–403.

DOI: 10.1007/s002140050021

Google Scholar

[15] E. J. Baerends, J. Autschbach, A. Bérces, et al. ADF2005. 01, SCM, Vrije Universiteit, The Netherlands, (2005).

Google Scholar

[16] S. H. Vosko, L. Wilk, M. Nusair. Can. J. Phys. 58(1980), 1200–1211.

Google Scholar

[17] C. Adamo, V. Barone. J. Chem. Phys. 108(1998), 664–675.

Google Scholar

[18] J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Phys. Rev. B. 46(1992), 6671–6687.

Google Scholar

[19] H.X. Chen, S.S. Chen, L.J. Li, et al. J. Hazard. Mater. 175 (2010), 569–574.

Google Scholar

[20] I. Mayer. Chem. Phy. Let. 97(1983), 270–274.

Google Scholar

[21] F. L. Hirshfeld. Theor. Chim. Acta. 44(1977), 129–138.

Google Scholar